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Abstract

This paper examines the impacts of carbon taxation on air quality co-benefits and

environmental justice. Using high-resolution data and a synthetic difference-in-

differences strategy, I find that the 2008 carbon tax in British Columbia has reduced

PM2.5 emissions by 5.2-10.9%. The flow of monetised co-benefits from climate

policy is large, corresponding to 40-81% of annual carbon tax revenues. While

pollution reductions arise for all citizens, the tax widens pre-existing disparities in

pollution exposure across income and racial diversity categories. The distribution

of co-benefits from market-based climate mitigation instruments may be regressive,

requiring additional policies targeting environmental inequalities.
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I. Introduction

The major sources of CO2 emissions are the fossil fuel combustion processes which also

release toxic air pollutants, making climate change and air pollution complementary

externalities. Policy efforts to control CO2 emissions by internalising the social cost

of carbon are thus bound to give rise to significant health “co-benefits” associated

with air quality improvements, with climate mitigation hailed as “the greatest global

health opportunity of the 21st century” (Watts et al., 2015). Moreover, a substantial

body of research has documented severe historical inequities in air pollution exposure

across income and racial groups (Colmer et al., 2020; Jbaily et al., 2022), and recent

work has reported the ambiguous impacts of market-based climate policy in closing

these “environmental justice gaps” (Cain et al., 2024). In this paper, I jointly assess

the air quality co-benefits and environmental justice implications of carbon taxation,

leveraging as a case study the experience of the 2008 carbon tax in British Columbia,

Canada.

Given the relative scarcity of long-tenured carbon pricing schemes, it is unsurprising

that empirical evidence of their causal impact on local air pollution co-benefits is

sporadic, and mostly limited to cap-and-trade schemes (Deschênes et al., 2017;

Hernandez-Cortes and Meng, 2023) with fewer studies focussing on fuel taxes

(Basaglia et al., 2023). On the contrary, there is a large and growing literature

which, using theoretical insights (Parry et al., 2015) and simulation models (Knittel

and Sandler, 2011; Zhang et al., 2021), has attempted to calculate the monetary

value of air pollution improvements due to carbon taxation and compare them with

the cost of mitigation policies. In particular, net health co-benefits arising from

carbon taxation are theorised to reach a high enough magnitude to partially or fully

offset the mitigation costs for households at a national (Li et al., 2018; Shindell et al.,

2016) and global (West et al., 2013; Vandyck et al., 2018) level, and may provide

strong additional incentives for a swift transition to a low-carbon economy1.

In light of the considerable size of projected air pollution co-benefits, it is fundamen-

1Reductions in morbidity and mortality due to improvements in air quality are likely not to capture
the full extent of the local pollution externality: a large body of research has linked air pollution
to non-health outcomes (see Aguilar-Gomez et al., 2022, for a review). Studies have linked air
pollution to negative educational outcomes (Ebenstein et al., 2016; Wen and Burke, 2022), increase
in crime rates (Bondy et al., 2020) and suicides (Persico and Marcotte, 2022), reductions in
labour productivity (Graff Zivin and Neidell, 2012), and in housing prices (Sager and Singer,
2024; Freeman et al., 2019), suggesting that any attempt at quantifying the monetary impact of
co-benefits based on health outcomes alone would, at best, provide a lower bound of the beneficial
consequences of air quality improvements.
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tal to examine how carbon pricing policies may impact the spatial distribution of

pollutants over affected populations, a theme also referred to as the “environmental

justice question” (Banzhaf et al., 2019; Currie et al., 2023). While carbon taxation

is expected to produce higher pollution reductions in areas with lower marginal

abatement costs, this efficiency criterion is blind to equity considerations, and CO2

abatement is not necessarily perfectly correlated with the dispersion of air pollutants

(Hernandez-Cortes and Meng, 2023; Cain et al., 2024). It is thus paramount to in-

spect whether carbon taxation presents efficiency-equity trade-offs in the distribution

of realised co-benefits, evidence of which is not unidirectional in the environmental

economics literature (Fowlie et al., 2012; Boyce and Pastor, 2013; Grainger and

Ruangmas, 2018; Shapiro and Walker, 2021; Currie et al., 2023; Sheriff, 2024).

The 2008 British Columbian carbon tax, covering approximately 77% of the Canadian

province’s CO2 emissions, was initially introduced at a rate of $10/tCO2, and sequen-

tially ramped up by $5 per year until 2012, when it was frozen at $30/tCO2 until 2018.

Notably, no other Canadian Province introduced carbon pricing schemes targeting

transportation emissions between 2000 and 20162. I acquire high-resolution data on

PM2.5, based on a combination of satellite observations, geo-chemical models and

ground-based monitoring stations, from Meng et al. (2019a) and van Donkelaar et al.

(2019), and combine them with granular socio-economic data at the Dissemination

Area level3, retrieved from the Canadian Census at 5-year intervals between 2001

and 2016. I exploit this highly disaggregated dataset to assess the effect of the car-

bon tax on air pollution co-benefits and the dynamics of the environmental justice gap.

The first result of the paper is that the carbon tax has resulted in statistically

significant reductions in PM2.5 concentrations, with a lower bound average estimate

of -0.36 µg/m3 and an upper bound average estimate of -0.89 µg/m3, correspond-

ing to a 5.2-10.9% reduction in particulate matter concentrations with respect to

pre-treatment average levels. Importantly, this result is obtained by moving away

from traditional difference-in-differences estimation, in light of a violation of the

foundational parallel trends assumption: particulate matter trends between British

2Carbon pricing mechanisms targeting other sectors were implemented by Alberta in 2007, Quebéc
in 2012, and Ontario in 2017 (Winter, 2024). Alberta’s intensity-based scheme only regulated large
industrial emitters. Quebéc’s cap-and-trade system became effective in 2013 and only regulated
transportation emissions since 2015, when it was linked with the California ETS. The province
introduced a small fuel duty in 2007, the Annual Duty to the Green Fund, which was narrow-based
and applicable to distributors rather than to consumers, and did not result in significant reductions
in gasoline demand (Houle, 2013; Erutku and Hildebrand, 2018).

3Corresponding roughly to US Census tracts.
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Columbian and control Dissemination Areas diverge prior to the implementation

of the carbon tax, thereby potentially biasing DID estimates. I rely on a family

of estimators related to the synthetic control method (SCM) for comparative case

studies (Abadie and Gardeazabal, 2003; Abadie, 2021), employing in particular the

synthetic difference-in-differences (SDID) estimator by Arkhangelsky et al. (2021) as

my preferred methodology. My results are consistent across a battery of robustness

checks: using alternative outcome variables (van Donkelaar et al., 2019), directly

estimating measurement error in remotely sensed vis-à-vis ground-based pollution

data (Fowlie et al., 2019), the impact of severe wildfire seasons on air pollution

(Burke et al., 2023), as well as alternative definitions of treatment and control cohorts

(Abadie, 2021).

I subsequently inspect the efficiency-equity trade off, examining whether air pollution

reductions arise heterogeneously within British Columbian metropolitan areas. I split

the pool of treated units in quintiles of pre-existing pollution, population density,

median income levels and racial diversity, and estimate the impact of the tax on

PM2.5 reductions for each quintile of these characteristics. While Pareto-optimal in

the welfare dimension, with reductions in pollution across the board, the carbon tax

is regressive in the environmental justice dimension: reductions are 1.6-2.2 times

higher in the bottom quintile of pre-treatment air pollution, population density and

racial diversity compared to the top quintile, and 1.7 times higher in the top median

income quintile compared to the bottom quintile.

Finally, I convert my estimates of particle pollution reductions into mortality re-

ductions4 and associated monetary gains, relying on the concept of the Value of

a Statistical Life5. The median monetary health gains appear to be large, in the

order of $88-402/year per capita. The central estimate of $198 is almost double

the $115.50 per capita Low-Income Climate Action Tax Credit, the carbon tax gov-

ernmental rebate accruing to low-income individuals to mitigate the cost of carbon

pricing. The total annual health gains are comparable to annual carbon tax revenues

at its inception (Ministry of Finance, 2009) and amount to 40-81% of annual tax

revenues at maturity (Ministry of Finance, 2013). Health gains exhibit a positive

spatial correlation with income, corroborating the evidence on the increase in the

environmental justice gap.

4Exploiting hazard rates adapted from the environmental health and epidemiology literature
(Lepeule et al., 2012; Krewski et al., 2009).
5Following Fowlie et al. (2019) and Carozzi and Roth (2023).
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This paper contributes to the literature on three main fronts. First, I extend the

recent evidence on the impact of carbon pricing on air pollution co-benefits, by

focussing on carbon taxation instead of cap-and-trade schemes and fuel tax increases

(Hernandez-Cortes and Meng, 2023; Basaglia et al., 2023). By analysing the BC

carbon tax, I provide empirical evidence on a setting in which the transportation

sector is the major contributor to jurisdictional CO2 emissions, and consequently the

most intensely regulated one. The focus on transportation also allows me to analyse

substitution dynamics at the intensive (fuel type) and extensive (transport mode)

margin. First, I dispel the suspicion that the carbon tax has resulted in gasoline to

diesel fuel substitution (Saberian, 2017), instead highlighting expected reductions in

both fuels’ total demand after the tax (as in Rivers and Schaufele, 2015; Bernard

and Kichian, 2019). Second, by exploiting highly disaggregated census information

on commute mode, I provide evidence on additional mechanisms underlying the

air quality improvements: BC residents substitute high emissions trips with public

transport and active commute modes following the implementation of the tax. My

results are thus also consistent with the findings of Pretis (2022), who found that the

2008 carbon tax reduced CO2 emissions in the transportation sector alone. Method-

ologically, I overcome known spatial and temporal selection problems connected with

the use of sparse air quality monitors (Grainger and Schreiber, 2019) by relying on

two sets of remotely sensed PM2.5 data (Meng et al., 2019a; van Donkelaar et al.,

2019) which provide full coverage of the spatial and temporal extent of my dataset. In

doing so, I substantially expand on prior work by Saberian (2017), whose findings are

partially confirmed only for a restricted subset of the data relying on traditional air

quality monitors6. The study thus also individuates a discrepancy between pollution

data retrieved from sparse ground-level monitors and exhaustive remotely-sensed

measurements.

The second contribution regards the growing literature on the relationship between

environmental policies and equity. I present an ex post analysis of the effects of a

carbon tax on the environmental justice (EJ) pollution gap. I find that pricing carbon,

while giving rise to widespread air quality co-benefits, may do so disproportionately

6Saberian (2017)’s paper found that the carbon tax was associated with an increase in PM2.5

maximum concentrations and exceedances for the city of Vancouver alone, using a 1998-2013
sample of air quality monitoring stations and Canada’s 15 most populated CMAs as control
units. As discussed in Section II, monitoring station-level data from the National Atmospheric
Surveillance Program (NAPS) is relatively sparse, with only 4 monitors in the Vancouver CMA
over the study period. The use of remotely-sensed information in this context entails a much
more ample coverage of BC urban areas and granular spatial patterns in the distribution of air
pollutants. Section V discusses the relationship between ground-level and remotely-sensed data in
more detail.
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with respect to pre-existing levels of air pollution, income, population density and

racial diversity. My estimates thus add a data point to the nascent literature on ex

post empirical evaluation of EJ effects from climate policy, which has so far reported

mixed evidence (Cain et al., 2024). This result counterbalances some of the recent

evidence of EJ implications of market-based instruments (Hernandez-Cortes and

Meng, 2023), and highlights the potential for coupling climate mitigation policy

with instruments targeting air pollution specifically, which have been shown to be

effective in closing EJ gaps (Currie et al., 2023; Sager and Singer, 2024). While it is

noteworthy that climate policy can give rise to significant air pollution and associated

health co-benefits due to complementarities alone, improvements along the equity

axis are not a necessary implication of efficiency-focussed instruments. In order to

obtain the greatest gains across multiple independent policy targets, multiple policy

instruments may be needed, a notion that economists have considered since the 1950s

(Tinbergen, 1952).

Lastly, I contribute to the environmental policy evaluation literature by showing

how the traditional DID estimator is susceptible of producing biased estimates, due

to substantially diverging pre-treatment trends across treatment and control units.

I solve this concern by exploiting SCM and the newly introduced SDID estimator

(Arkhangelsky et al., 2021) and exploiting, unlike recent studies in environmental

policy evaluation (e.g., Andersson, 2019; Leroutier, 2022; Basaglia et al., 2023) a

subnational level treatment and a highly granular framework. In my setting, with

multiple treated units and a large number of control units to draw synthetic counter-

factuals from, both the SCM and SDID perform well in addressing concerns about

diverging pre-treatment trends and identify robust estimates of the impact of the

carbon tax on PM2.5 levels, improving substantially upon traditional estimators and

aggregate policy settings.

The remainder of the paper begins with a description of the carbon tax and the data

sources in Section II. In Section III, I present the identification strategy, followed by

the main results in Section IV. Section V shows the consistency of the main analyses

to alternative specifications and mechanisms underlying the results are presented

in Section VI. I examine environmental justice dynamics in Section VII, and esti-

mate mortality reductions and associated monetary health gains in Section VIII.

Section IX concludes the paper.
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II. Policy Context, Data and Descriptive Statistics

A. The 2008 British Columbian Carbon Tax

The introduction of the British Columbia (BC) carbon tax was formally announced

in the provincial budget plan in February 2008, catching the public off guard due

to the unexpected nature of this move by the Liberal government (Harrison, 2012;

Ahmadi et al., 2022). The policy aimed to reduce emissions by a minimum of 33%

below 2007 levels by 2020 (Azevedo et al., 2023). Implemented on July 1, 2008,

the initial tax rate was set at $10/tonne CO2eq and increased by $5/tonne CO2eq

annually until it reached $30 in 2012, establishing one of the highest carbon prices

globally at the time (Murray and Rivers, 2015; Azevedo et al., 2023). The carbon

tax rate remained at $30 until 2018, when it increased to $35, with a subsequent

annual increment of $5 anticipated until it reached $50/tonne in 2022. The tax,

applicable to all fossil fuel purchases in BC, accounts for approximately 77% of the

province’s total greenhouse gas (GHG) emissions, underscoring the comprehensive

scope of the policy (Murray and Rivers, 2015; Rivers and Schaufele, 2015; Ahmadi

et al., 2022; Azevedo et al., 2023). Notably, the most affected sector is transportation,

which contributed to 43.9% of the province’s total CO2 levels in 2007; exemptions

cover exported fuels, non-combustion GHGs (e.g., landfill methane), and emissions

generated outside BC7.

A key aspect of implementing the BC carbon tax is its commitment to revenue

neutrality, serving as a crucial mechanism to secure public support and mitigate re-

sistance to additional taxation, a notable challenge in the execution of carbon pricing

schemes (Carattini et al., 2017; Carattini et al., 2019)8. The revenue-neutral design of

the tax involved returning funds to consumers and businesses through various means,

including direct transfers to low-income individuals, income tax reductions, and

corporate tax cuts (Murray and Rivers, 2015; Ahmadi et al., 2022). In particular, the

achievement of revenue neutrality in BC involves two primary mechanisms. Firstly, by

7This excludes a significant portion of air transportation and non-metallic mineral manufacturing
emissions. Additionally, non-fossil fuel sources like fugitive emissions and chemical processes are
exempted, broadening the range of exclusions (Azevedo et al., 2023).

8Subsequent to the initial “Axe the tax” campaigns leading up to the 2009 provincial elections,
polling data indicated a sustained increase in public approval of the tax until 2015 (Murray and
Rivers, 2015). However, after 2012, there was a shift towards earmarking some revenues for specific
sectors, creating a mixed system of redistribution (Murray and Rivers, 2015). Public opinion on
the carbon tax was initially volatile, with campaigns against it leading up to the 2009 provincial
elections, but sustained approval was observed until 2015 (Murray and Rivers, 2015). Recent
studies, though, suggest that attitudes towards carbon pricing may be more influenced by partisan
identities than updated information about potential rebates (Mildenberger et al., 2022)
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initiating a 5% reduction in the bottom two income tax brackets, BC secured the low-

est income tax rate in Canada for individuals earning up to $122,000. This reduction
was complemented by additional measures such as the “low income climate action”

tax credit and the Northern and Rural Homeowner benefit (Azevedo et al., 2023)9.

Secondly, a series of reductions were applied to the general corporate tax rate, starting

at 12% in 2008 and gradually decreasing to 11%, 10.5%, and 10% in 2010 and 2011,

before returning to 11% in 2014. Simultaneously, the small business corporate income

tax rate decreased from 4.5% to 2.5% in 2008 (Azevedo et al., 2023)10. According to

the Budget and Fiscal Plan, the carbon tax generated approximately $1.2 billion

in annual revenue since 2012 when the rate stabilized at $30/tonne CO2eq, with

around $1.4 billion returned to consumers (Ahmadi et al., 2022; Azevedo et al., 2023).

Given the popularity of the carbon tax, it is unsurprising that economists have

conducted several analyses of its effectiveness across a range of measures. Focussing

on the transport fuel market, Rivers and Schaufele (2015) and Lawley and Thivierge

(2018) find 5-8% reductions in gasoline demand due to the tax implementation, while

Antweiler and Gulati (2016) estimate a 1-7% decrease. Azevedo et al. (2023) investi-

gate the employment response to the tax: the absence of aggregate effects masks

heterogeneous impacts, with large emission-intensive firms negatively affected and

small businesses benefitting from the policy. In terms of global pollutants, Ahmadi

et al. (2022) detect emissions reductions in the manufacturing sector, and Xiang and

Lawley (2019) find a 7-10% reduction in residential heating emissions, contradicted

by the more recent multi-sectoral analysis of Pretis (2022), which identifies significant

reductions in transportation emissions with negligible effects on the remaining sectors

of the economy.

B. Data and Descriptive Statistics

In order to analyse the effect of British Columbia’s 2008 carbon tax on air quality, I

assemble and process information on local pollutants’ concentrations, geographic char-

acteristics, and socio-economic dynamics from multiple sources. The observational

9The low income climate action tax credit was initially set as $100 per adult plus $30 per child, and
subsequently raised to $115.50 per adult and $34.50 per child (Ministry of Finance, 2009; Ministry
of Finance, 2013). The Northern and Rural Homeowner Benefit amounts to $200 but only applies
to howeowners in areas outside the Capital (Victoria CMA), Greater Vancouver (Vancouver CMA)
and Fraser Valley (Abbotsford CMA) regional districts. The appropriate rebate to compare to
health gains is thus the low income climate action tax credit.

10Since 2008, various tax credits, ranging from the BC Seniors Home Renovation Tax Credit to the
Film Incentive BC tax credit, have been implemented, contributing to the revenue redistribution.
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units used in the analysis are Dissemination Areas (DAs), the smallest standard

geographic areas for which Canadian census data are disseminated. Since the paper

is concerned with analysing the effect of carbon pricing on air quality in cities11, I

restrict the geographic scope of the dataset to 26 Canadian Census Metropolitan

Areas (CMAs), thereby excluding rural areas and smaller towns12. Canadian census

data is obtained from von Bergmann et al. (2022), while DA census boundaries are

converted to common geographies based on von Bergmann (2021), and using DA

administrative boundaries from the 2016 Canadian census as the target geography.

My final dataset is thus comprised of 25,479 DAs observed over 19 years, from 2000

to 2018, across 26 CMAs.

The main outcome variable employed in the paper is yearly average PM2.5 concentra-

tion from Meng et al. (2019a), which combine information from satellite-retrieved

Aerosol Optical Depth with simulations and ground-based observations obtained

from monitoring stations readings. I extract the mean value of yearly PM2.5, weighted

by grid-cell level population counts obtained from Rose et al. (2020), onto the 25,479

DAs which constitute my dataset for every year between 2000 and 201813.

The main advantage of this source compared to data obtained from monitoring

stations is its much wider spatial and temporal coverage, which also allows me to

overcome the selection problem mentioned in Grainger and Schreiber (2019) relative

to the location of monitoring stations within urban areas14. The entity of data loss

when using ground-based data is considerable: PM2.5 data from the National Atmo-

spheric Surveillance Program (NAPS) is only available for 61 DAs in 2000, growing

to 230 in 2018 as new monitoring stations get added every year (see Figure A.1).

Nonetheless, the satellite-retrieved measurements from Meng et al. (2019a), when

restricted to the DAs with at least one PM2.5 ground monitoring station, correlate

11An additional motivation for restricting the analysis to cities is that previous studies have
documented a disproportionate behavioural adjustment in dense urban zones and lower or null
effects in rural areas (Lawley and Thivierge, 2018; Rivers and Schaufele, 2017).

12The CMAs in the dataset are: St. John’s, Halifax, Saint John, Quebec, Trois Rivieres, Sherbrooke,
Montreal, Ottawa, Saguenay, Kingston, Toronto, Hamilton, St. Catharine’s, Kitchener, London,
Windsor, Sudbury, Thunder Bay, Winnipeg, Regina, Saskatoon, Calgary, Edmonton, Abbotsford,
Vancouver, and Victoria. While the number of Canadian CMAs is 35 in the latest available
census wave (2016), I only keep in the dataset those CMAs which were designated as such in the
2001 Census, in order to ensure compatibility across all waves.

13The resolution of the PM2.5 raster data is 0.01°x 0.01°, while population data is available for grid
cells of dimension 0.0083° x 0.0083°, implying that the population raster had to be resampled at
the resolution of the PM2.5 raster in order to be viable for use in the weighted mean calculation.

14Monitoring stations are likely to be located where air pollution is lower due to strategic behaviour
and discrimination by local regulators, thereby introducing measurement error in an eventual
empirical analysis.
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well with the NAPS readings, as shown in Figure A.2 and Figure A.3.

I rely on the Meng et al. (2019a) PM2.5 estimates in order to produce my main results.

However, I also run the main analysis using PM2.5 concentration data from van

Donkelaar et al. (2019). While the two estimates are highly related, with a Pearson

correlation coefficient of 0.795 (see Figure A.4 and Figure A.5), the concentrations

from Meng et al. (2019a) are generally lower throughout the sample15.

In terms of relevant covariates and environmental justice dimensions, I first obtain

population counts at the DA level from Rose et al. (2020), which are available

for all years between 2000-201816. Further, I employ four waves of the Canadian

census (2001-2016 at 5-year intervals) to retrieve information on median income

at the DA level, and on the racial composition of the DA population, calculating

the share of population belonging to a visible minority and the Theil’s Entropy

Index (Iceland, 2004) for racial diversity. I also extract the 2006 Material Depriva-

tion Index from Pampalon et al. (2012) for all DAs in my sample. If the carbon

tax was successful in producing a behavioural adjustment in BC residents, an ex-

pected result would be higher take up of alternative means of transport within

metropolitan areas. Therefore, I leverage the detailed information contained in the

four waves of Canadian census data to retrieve DA-level data on commute mode

shares. I divide commute modes in two different categories: high emissions (cars,

taxis, and motorcycles), and low emissions (public transport, bicycles, and walking)17.

Figure 1 plots the baseline spatial distribution of the dependent variable and the

main covariates over the Vancouver CMA, the most populated metropolitan area in

the treated province of British Columbia. The distribution of PM2.5 concentrations

is highly spatially correlated with population density, as found in the US by Carozzi

and Roth (2023) or Germany by Borck and Schrauth (2021). Confirming the insights

of the environmental justice literature (Cain et al., 2024) racial diversity and the

15Data from van Donkelaar et al. (2019) is primarily designed to support large-scale studies.
Although the dataset offers high-resolution data at 0.01° × 0.01°, the PM2.5 values are influenced
by information sources at coarser resolutions. This means that the data may not fully capture
fine-scale PM2.5 changes at the target resolution. As such, the Meng et al. (2019a) dataset
may be preferred due to its methodology and higher capability in capturing localized variations.
Furthermore, the choice of employing data from Meng et al. (2019a) is conservative, as results
using the van Donkelaar et al. (2019) dataset are generally higher in magnitude.

16The dataset also contains population counts for all DAs extrapolated from Canadian censuses;
however, this data is only available in 5-years intervals between 2001 and 2016.

17I further decompose the low emissions category into public transport only and zero emissions
commutes (cycling and walking).
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inverse of median income are also highly spatially correlated with air pollution at

the baseline. Baseline commute mode seems to be inversely related with the spatial

distribution of PM2.5: areas whose inhabitants are less reliant on cars, taxis and

motorbikes seem to be more polluted on average, a result probably due to their

centrality with respect to the road networks and urban form18.

Lastly, I obtain monthly information on the BC gasoline and diesel fuel markets, at

the province level, for January 1991-December 2016. In particular, I extract the an-

nual sales of transportation fuels (motor gasoline and diesel), from Statistics Canada

(2021b), gasoline and diesel price data from Kalibrate (formerly Kent Group Ltd.) at

the monthly level for the city of Vancouver, which I consider representative of the en-

tire province, monthly after tax income and unemployment rate data from Statistics

Canada (2021c), and the CAD-USD monthly exchange rate, retrieved from the Pacific

Exchange Rate Service at University of British Columbia’s Sauder School of Business.

18Summary statistics for the whole sample, split across treatment and control CMAs, are presented
in Table A.1 and Table A.2 for the pre-treatment and post-treatment periods, respectively.
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Figure 1: Descriptive statistics at the baseline

Notes: Spatial distribution of PM2.5 and relevant covariates within the Vancouver CMA before the
carbon tax implementation. Top row: PM2.5 and population density; Middle row: median income
and visible minority population share; Bottom row: high emission and public transport commute
mode shares. Time-varying variables are averaged over 2005-2007, the three years preceding the
implementation of the carbon tax, while all variables retrieved from the Canadian Census are taken
at their 2006 values, the last observation before the tax was instituted.
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III. Empirical Strategy

A. Simple and matched difference-in-differences

The core aim of my empirical strategy is to estimate the treatment effect of the

2008 British Columbian carbon tax on local air pollution, measured in terms of

PM2.5 concentrations at the DA level. A traditional methodology for this estimation

is a two-way fixed effects difference-in-differences (TWFE-DID) regression. The

estimating equation takes the form:

PM2.5it = τ didDit + θt + ηi + ϵit (1)

Where Dit is the DID binary indicator, taking value 1 for all treated units after the

implementation of the carbon tax in 2008, and 0 for all other observations; θt and ηi

are respectively time and unit specific fixed effects, ϵit is a time-varying idiosyncratic

error term, and τ did is the coefficient of interest, capturing the average effect of being

exposed to the carbon tax.

In order for τ did to be equal to the average treatment effect on the treated cohort

(ATT), the identifying assumption is that parallel outcome trends between the treated

and the control units hold, i.e. if the 2008 carbon tax had not been implemented in

British Columbia, PM2.5 levels in British Columbian DAs would have followed the

same trajectory as PM2.5 levels in DAs located in other Canadian provinces. Fig-

ure A.6 and Figure A.7 report the average PM2.5 trends for 2000-2016 and 2000-2018,

respectively, for British Columbian and control DAs, together with the universe of

PM2.5 observations. The parallel trends assumption is untestable by definition, but

it is essential to inspect the pre-treatment outcome paths and the distribution of

treatment and control observations around their mean pre-intervention trends. In

both cases, there is reason to suspect that the DID estimator would fail to identify

the correct ATT. A visual inspection pre-treatment trends suggests a violation of the

parallel trends condition (more evidently in the case of Figure A.7), while a more

formal placebo DID regression of PM2.5 on treatment status with data limited to

2000-2007 and treatment assigned in 2004 identifies a significant placebo divergence

in trends in both cases (Table A.3). Moreover, the dispersion of control observations

around their mean trends is much higher than for treatment units, revealing sub-

stantial heterogeneity: by giving equal weight to all control observations, DID will

include units whose pre and post-treatment outcome paths fundamentally differ from

those of DAs in British Columbia, likely introducing an upward bias in the coefficient.

A potential solution to the pre-treatment heterogeneity in levels and trends is

13



matching treatment and control groups on the basis of baseline pollution levels

and on covariates which influence air quality. Restricting the analysis to DAs

which experience similar outcomes and are exposed to similar pollution stressors can

attenuate the pre-treatment dispersion in PM2.5 levels and divergence in trends, and

ensure the sample is more balanced before performing the DID regression (Imbens,

2015). I use one-to-one matching, moving away from the traditionally employed

propensity score algorithm and instead preferring Coarsened Exact Matching (CEM)

(Iacus et al., 2012). I perform two versions of this procedure: in the first one (MDID1),

I match treatment and control units on the baseline (2005-2007) average level of

PM2.5. In the second one (MDID2), I add baseline averages of population density,

median income, high emission commute mode share, and road density. I exploit

CEM to pre-process and trim the sample before running a weighted TWFE-DID

regression using the CEM matching weights ω̂i
cem in the following form:

PM2.5it

√
ω̂i

cem = τ didDit

√
ω̂i

cem + θt
√

ω̂i
cem + ηi

√
ω̂i

cem + ϵit
√

ω̂i
cem (2)

B. Synthetic control method and synthetic difference-in-differences

The problem of diverging pre-treatment trends in empirical applications is often

addressed through the SCM (Abadie and Gardeazabal, 2003; Abadie, 2021)19. In

the BC carbon tax case, the SCM constructs a set of synthetic DAs as a weighted

combination of control DAs by finding, for each treated unit i, a non-negative vector

of weights ωsc
i summing to one, which ensures that each convex combination of the

outcome variable for control units matches each outcome variable for the treated

units for all periods up to the intervention date.

In order to combine the attractive features of both TWFE-DID (the inclusion of

additive unit-specific and time-specific fixed effects), and SCM (reducing the reliance

on the parallel trends assumption by weighting observations in order to ensure closely

matched pre-intervention trends), Arkhangelsky et al. (2021) have introduced a new

method, synthetic difference-in-differences (SDID), which employs time and unit

(two-way) fixed effects in the regression function (as in TWFE-DID), together with

unit-specific weights (as in SCM) and time-specific weights which lessen the role

of time periods that are largely divergent from post-treatment time periods. In a

nutshell, for each treated unit SDID estimates: (1) unit weights ωsdid
i which underpin

a synthetic control whose outcome is approximately parallel to the outcome for the

treated unit; (2) time weights λsdid
t which ensure that the average post-treatment

19Usually with a unique treated unit, but extensible to the case of multiple treated units.
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outcome for control units only differs by a constant from the weighted average of

pre-treatment outcome for each of the control units – a synthetic pre-treatment

period using controls. Once unit and time weights are calculated, SDID estimates a

TWFE regression on the resulting panel, identifying the SDID ATT τ̂ sdid by solving

the minimisation problem:20.

(τ̂ sdid, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(PM2.5it − µ− ηi − θt − τDit)
2ω̂sdid

i λ̂sdid
t

}
(3)

In the remainder of the paper, I regard SDID as my preferred method in order to

estimate the effect of the 2008 BC carbon tax on air pollution co-benefits, as the

methodology allows me to overcome the apparent violation of the parallel trends

assumption and pre-treatment outcome heterogeneity problems in conventional DID;

nonetheless, I estimate my main regression and robustness checks using DID, MDID,

SCM and SDID, in order to assess the direction of the potential bias. I calculate

standard errors for SCM and SDID using the bootstrap variance estimation algorithm

described in Arkhangelsky et al. (2021, p. 4109), with 200 replications. The procedure

constructs a bootstrap dataset by sampling a portion of the original dataset with

replacement, and computes the estimator τ (b) on this subset for each iteration b. The

variance is then defined as:

V̂ b
τ =

1

B

B∑
b=1

(
τ̂ (b) − 1

B

B∑
b=1

τ̂ (b)

)2

(4)

20Section A2 presents a detailed formal comparison between TWFE-DID, SCM, and SDID, drawing
on the seminal work of Arkhangelsky et al. (2021).
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IV. Results

In Table 1, I report the results of the DID, MDID, SCM and SDID regressions, using

the Meng et al. (2019a) PM2.5 dataset. The simple DID regression is also reported

graphically, alongside the outcome path plots for SCM and SDID, in Figure 2. It is

immediate to note how the violation of the parallel trends assumption examined in

Table A.3 and Figure A.6 results in a likely case of upward bias for the simple DID,

confirmed by the positive and significant coefficient, τ̂ did = 0.39µg/m3, reported

in column (1) of Table 1 and in the leftmost panel of Figure 2. This result would

indicate that the carbon tax has resulted in an increase of PM2.5 emissions, which

would contradict the findings by Rivers and Schaufele (2015) and Pretis (2022) on fuel

consumption and CO2 emissions. MDID1 and MDID2 results are instead obtained by

pre-processing the sample using the CEM procedure described in Section III, match-

ing on baseline PM2.5 levels in column (2) and on baseline PM2.5, population density,

median income, high emission commute mode share and road density in column (3).

The matching procedure produces estimation samples which are much more closely

aligned (Figure A.8 and A.9), and reverses the sign on the simple DID estimates,

with negative and significant results contained in the τ̂mdid = [−0.27,−0.35]µg/m3

range that are a first indication of the incidence of carbon pricing on air quality

co-benefits. Moving away from simple DID estimation seems to be an effective

strategy in minimising the impact of diverging trends and unbalanced pre-treatment

characteristics.

Columns (4) and (5) confirm this insight by relying on the SCM and SDID methods,

which also identify negative and statistically significant effects of the tax in reducing

PM2.5 emissions. In the centre panel of Figure 2, I plot the average outcome path

for the treated units and the traditional synthetic control. The improvement in

pre-treatment fit is dramatic, with a minimal average deviation between British

Columbian DAs and their controls, implying that the SCM performs well in giving

positive weights to control units which best approximate treated DAs’ outcome paths

and zero weight to control units which exhibit different trends. Consistently with

the hypothesised bias of the simple DID estimator, SCM indeed agrees with MDID

in identifying an effect of opposite sign to DID, τ̂ sc = −0.14µg/m3. Results for the

SDID estimator are graphically shown in the right-most panel of Figure 2. At the bot-

tom of the panel, pre-treatment time-weights are represented in pink. Pre-treatment

periods are weighted to match post-treatment levels (plus a constant) in the outcome

variable for the control units. The SDID estimator does a particularly good job in

imposing pre-treatment parallel trends in the years preceding the tax, even if weights
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λt are unevenly distributed over the pre-intervention period. However, negligible

weights in 2007-2008 are reassuring, given that a standard caveat in event-study

methodologies is the excessive reliance on the single period immediately preceding

the intervention (Heckman and Smith, 1999). The SDID procedure is able to select

control units which exhibit pre-treatment trends that are almost perfectly parallel to

BC’s outcome path, especially in the four-year window preceding the intervention.

The estimated ATT is τ̂ sdid = −0.36µg/m3, corresponding to a 5.2% reduction with

respect to pre-intervention mean pollution levels. I regard SDID as the preferred

methodology due to its greater flexibility and to the selection of a sparser set of

control DAs21. While SCM obtains a near-perfect fit pre-treatment, the outcome

path of its synthetic unit heavily depends on the particular set of units receiving

positive weights, which in my highly disaggregated setting is not ideal22.

Notably, MDID, SCM and SDID all agree in identifying a negative and statisti-

cally significant effect of the 2008 carbon tax on PM2.5 emissions, contradicting

“naive” DID estimates. The potential bias arising in the simple DID regression could

be due to the diverging secular trends between treatment and control units, with

treatment units on steeper declining trends prior to the implementation of the tax

vis-à-vis control units. It is thus essential to address this concern in order to obtain

a “clean identification” of the policy impact (Sager and Singer, 2024). Failing to do

so would introduce a source of bias which could go as far as reversing the correct

estimates. Finally, while I regard SDID as the preferred methodology over SCM due

to its flexibility and its reliance on a larger portion of the control pool, it is crucial

to note that the MDID in this instance obtains results which are similar in magnitude.

21SDID selects indeed 6,258 control units among the untreated DAs and then performs DID on the
matched sample with the inclusion of unit and time fixed effects to aid the estimation.

22In Figure A.10, I aggregate all 6,258 DAs which receive positive weights to the CMA level, in
order to obtain the composition of synthetic BC in terms of percentages of other Canadian CMAs,
in a similar vein to the traditional SCM methodology of Abadie (2021).
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Table 1: The 2008 carbon tax and changes in PM2.5

(1) (2) (3) (4) (5)
DID MDID1 MDID2 SCM SDID

τ̂ 0.3925 -0.2750 -0.3504 -0.1421 -0.3633
(0.0074) (0.1495) (0.1676) (0.0809) (0.0219)

Unit FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓

ωi
√
ωi

√
ωi ✓ ✓

λt ✓

Nobs 432939 305320 132430 432939 432939

Notes: All point estimates represent the average impact of the 2008 carbon tax during the 2009-
2016 post-treatment period. Standard errors in parentheses are calculated using the bootstrap
variance estimation algorithm described in Arkhangelsky et al. (2021) with 200 replications for
columns (1), (4) and (5), and are clustered at the CMA level for columns (2) and (3). In Column
(2) the data is pre-processed by matching on coarsened bins of baseline PM2.5 levels. Column (3)
additionally matches on population density, median income, high emissions commute mode share
and road density at the DA level. All regressions use 2000-2016 data.

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff

2000 2005 2010 2015 2000 2005 2010 2015 2000 2005 2010 2015
4

5

6

7

8

9

Year

P
M

2.
5

Control British Columbia

Figure 2: The impact of the 2008 carbon tax on changes in PM2.5

Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al.
(2019a) data. The 2008 carbon tax is denoted by a black vertical line. Pre-treatment time weights
λt are denoted in pink.
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V. Robustness Checks

A. Main results with van Donkelaar et al. (2019) PM2.5 data

I repeat the DID, SCM and SDID estimation using the van Donkelaar et al. (2019)

PM2.5 dataset, which is available between 2000 and 2018. Notwithstanding the high

correlation between the two outcome variables, as outlined in Figure A.4, both the

treatment and control pre-intervention trends exhibit some differences with respect

to the Meng et al. (2019a) dataset23. The violation of the parallel trends assumption

is once again highlighted in a placebo DID regression (Table A.3), as well as in

the graphical representation of the DID regression in Figure A.12 which, differently

from the previous estimation, identifies a negative effect of the 2008 carbon tax on

emissions of τ̂ did = −0.5µg/m3 (see Table A.4).

The SCM, represented graphically in the middle panel of Figure A.12, again obtains

a good pre-treatment fit, signalling that each British Columbian DA’s outcome

path is best approximated by a convex combination of control DAs rather than

equally weighted control units. Furthermore, as evidenced in Table A.4, the poten-

tial direction of the TWFE-DID bias is consistent with the main result: the SCM

estimates a negative ATT of τ̂ sc = −0.71µg/m3, therefore qualitatively reinforcing

the SCM result of Table 1. A similar conclusion can be drawn from the results of

the SDID estimation, presented in the right-most panel of Figure A.12. The SDID

procedure is able to select control units24 which exhibit pre-treatment trends that

are almost perfectly parallel to BC’s outcome path, with the exception of outlying

time periods which receive zero-weights in the estimation. The estimated ATT of

τ̂ sdid = −0.89µg/m3 is slightly lower, but qualitatively similar to the SCM ATT.

In terms of magnitude, both the SCM and SDID regressions identify a substantial

drop in PM2.5 concentrations with respect to 2000-2007 levels, corresponding to a

reduction of 10.9% from the pre-intervention PM2.5 mean for British Columbia.

23However, the temporal location of peaks and troughs is generally respected, as is the relationship
between the BC and control units outcome path. Indeed, DAs located in British Columbia always
exhibit lower average annual concentrations of particulate pollution, and their PM2.5 trend prior
to 2008 appears to decline at an even faster pace than for control observations, barring some
peaks in concentrations typical of the control provinces.

24The composition of the donor pool, aggregated to the CMA level, is reported in Figure A.11.
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B. Accounting for Measurement Error in Satellite-based Estimates

The remotely sensed PM2.5 datasets which I employ are gridded estimates of concen-

trations and may contain prediction error, which could substantially alter regression

results (Fowlie et al., 2019). I assess the robustness of my estimates to this type

of non-classical measurement error, by exploiting the geographic correspondence

between gridded PM2.5 data and DAs which contain at least one NAPS monitoring

station, in order to construct a spatially matched dataset containing predicted and

observed PM2.5. I first calculate prediction error as the difference between satellite-

derived PM2.5 and monitor readings for the 1501 DA-year pairs which contain at least

one NAPS monitoring station. As in Fowlie et al. (2019), I then regress prediction

error ∆PM2.5 on a set of covariates at the DA level25 and I predict out of sample

∆PM2.5 for the entire dataset.

I adjust remotely sensed PM2.5 data by accounting for prediction error, and use

the quantity P̂M2.5it = PM2.5it + ̂∆PM2.5it to run SDID regressions using Meng

et al. (2019a) and van Donkelaar et al. (2019) data, respectively. The results, re-

ported in Table A.5, are slightly lower though qualitatively similar to the main

specifications, with τ̂ sdid = −0.26µg/m3 using the Meng et al. (2019a) dataset and

τ̂ sdid = −0.85µg/m3 using corrected van Donkelaar et al. (2019) data. The SDID

estimator adequately identifies treatment effects by obtaining pre-treatment parallel

trends in both instances (Figure A.13). The adherence between these results and

the main specifications reinforces confidence about correctly measuring the policy

effects. While the substantial difference between estimated treatment effects using

the two gridded PM2.5 datasets remains, this is likely due to their calibration and

prediction procedures rather than prediction error. I conservatively adopt lower

bound estimates using the Meng et al. (2019a) as the main result, and regard all esti-

mates using the van Donkelaar et al. (2019) product as the upper bound on my results.

C. Wildfires

Non-tropical forest fires have seen a dramatic increase in frequency in recent years

(Jones et al., 2024), and have become a major contributor to air pollution in North

America (Burke et al., 2023), with well-established links to adverse consequences

on health (Aguilera et al., 2021; Heft-Neal et al., 2023). Beyond the concerning

impact on carbon emissions (Byrne et al., 2024), Canadian wildfires are an important

25Namely, satellite-based PM2.5, population density, nighttime lights, maximum and minimum
temperature, and wind speed.
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source of PM2.5 (Meng et al., 2019b). Furthermore, PM2.5 emissions from wildfires

are not necessarily localised, especially for large events: a higher fire radiative power

(FRP) results in longer travel distances for wildfire smoke plumes (Xue et al., 2024).

Accordingly, wildfire-related pollutants have been shown to affect populations located

at hundreds of kilometres from ignition sites (Moeltner et al., 2013; Sheldon and

Sankaran, 2017), a recent example of which are the severe consequences registered in

the United States during the devastating 2023 Canadian summer wildfires (Thurston

et al., 2023).

Estimation of the impact of the 2008 carbon tax on PM2.5 concentrations in British

Columbian CMAs is then exposed to a potential violation of the Stable Unit Treat-

ment Value Assumption (SUTVA). To correctly identify the effect of the tax, all

employed methods require no interference between treated and control units’ out-

comes (Abadie, 2021). Events which originate particulate pollution in the treated

unit but disperse it over untreated observations can give rise to a SUTVA violation:

the artificial inflation of outcome trends in the pool of controls is susceptible of

producing downward biased ATT results, which would overestimate PM2.5 concen-

trations reductions following the carbon tax26. An analysis neglecting the potentially

important contribution of wildfire smoke to PM2.5 concentrations in Canadian cities

due to long-range pollution transport would thus be susceptible of generating dis-

torted results.

While measures of wildfire-specific particulate pollution concentrations have been

developed for the conterminous US (Childs et al., 2022), they are unavailable for

Canada. Hence, in order to address contamination concerns with my PM2.5 data, I

devise an alternative strategy. First, I obtain the entire archive of active fire data

from the NASA’s Fire Information for Resource Management System (FIRMS)27,

retrieving 868,120 fire ignitions across Canada between 2001 and 2018. In Fig-

ure 3, I report monthly trends for total Fire Radiative Power (FRP, measured in

megawatts) and the total number of fire detections. It is immediate to notice how

fire activity is highly seasonal, with ignitions and FRP sharply rising in May and

peaking between July and August (Matz et al., 2020). Anomalies in CMA-level

PM2.5 concentrations due to wildfires will thus be temporally localised to the summer

26Similarly, particulate emissions originating in the control units and dispersing over the treatment
group would deflate the carbon tax impacts. In the context of estimating the health co-benefits
associated with a carbon tax, overestimation is a more pressing concern – nonetheless, the
methodology I propose here addresses both directions of potential bias due to interference.

27FIRMS employs data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard
the Aqua and Terra satellites, using the detection algorithm from Giglio et al. (2003).
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months, and attenuate over the remaining part of the year. I exploit this insight by

retrieving the PM2.5 data product from van Donkelaar et al. (2019), measured at the

monthly scale28, and produce a novel time series at the DA-year level by selectively

excluding the months of May, June, July and August for each year. The resulting

dataset is arguably capable of measuring PM2.5 concentrations in Canadian CMAs

without incurring in alterations due to wildfire-induced long range pollution transport.
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Figure 3: Monthly trends in wildfire detections in Canada, 2001-2018.

Notes: Panel A plots the monthly sum of Fire Radiative Power in megawatts (MW) detected in the
entire Canadian territory between January 1st, 2001 and December 31st, 2018. Panel B plots the
total number of fire ignitions (fire hotspot detections) within the same time frame. Shaded areas
correspond to the months of May, June, July and August. Data retrieved from NASA LANCE
FIRMS.

I then employ this time series in an analogous manner as the one described in Sec-

tion IV, and run DID, SCM and SDID in order to estimate the effect of the carbon

tax on PM2.5 concentrations in BC, clean of wildfire-induced pollution. The results,

reported in Figure A.14 and Table A.6, are consistent with my main estimates: SDID

identifies a τ̂ sdid = −0.92µg/m3 reduction in PM2.5 after the implementation of the

carbon tax.

D. Narrower Temporal and Spatial Scope

Effect Dynamics: I restrict the estimation window to 2000-2013, in order to check

whether the carbon tax ramp-up is the main mechanism behind the continuous

28The monthly disaggregation is unavailable for the Meng et al. (2019a) dataset.

22

https://firms.modaps.eosdis.nasa.gov
https://firms.modaps.eosdis.nasa.gov


reductions, and to what extent does the post-2013 tax rate freeze reverse the im-

provements29. The results, presented in Figure A.15 and Table A.7 identify a higher

ATT of τ̂ sdid = −0.67µg/m3, which corroborates the hypothesis. The dynamics of

the carbon tax phase-in are thus an important component of observed reductions:

the effect is almost double in size in the first 5 years of the tax scheme, when tax

rates increase step-wise every year. Air pollution improvements slightly reverse and

stabilise at a lower level once the tax signal is kept constant.

Smaller treatment pool: I first confine the treated pool to DAs within the Vancouver

metropolitan area, excluding all DAs in the Abbotsford and Victoria CMAs. The

resulting treatment cohort is comprised of 2874 DAs, vis-à-vis the 3490 DAs con-

stituting the entire treatment unit pool; the control pool is kept the same, with

21989 control DAs. Perhaps unsurprisingly, given the relatively small number of

DAs pertaining to the Abbotsford and Victoria CMAs, the results (reported in

Figure A.16 and Table A.8) are qualitatively unchanged from the main regressions

using the Meng et al. (2019a) dataset. Secondly, I drop DAs in the Vancouver

CMA and restrict the analysis to DAs in the Abbotsford and Victoria CMAs. The

pre-treatment fit between treated and synthetic units is worsened, but the results

(reported in Figure A.17 and Table A.9) are similar to the main regressions using

the Meng et al. (2019a) dataset.

Rail expansion: In 2009, the city of Vancouver opened the rapid transit Canada

Line, which expanded public transit access from downtown Vancouver to the Greater

Vancouver area, and connected existing transit lines. Given the timing of this infras-

tructural investment, households with easier access to Canada Line station may have

reduced gasoline consumption and associated PM2.5 irrespective of the carbon tax,

confounding the estimated effect. I geolocate Canada Line stations and calculate

their catchment area by tracing 1 Km circular buffers around them (see Figure A.18).

I then select all DAs in rail stations catchment areas and exclude them from the

analysis. The results are reported in Figure A.19 and Table A.10), and are slightly

higher in magnitude but similar to the main specifications.

Leave-one-out tests: I test the robustness of my estimates to the iterative exclu-

sion of the other three large Canadian economies (Alberta, Quebéc and Ontario)

from the donor pool. This exercise reprises the logic of the leave-one-out tests

proposed for the traditional SCM by Abadie et al. (2010). Further, I assess the

29In 2012, the carbon tax was frozen at $30/tCO2 as reported in Section II.
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robustness of my estimates to dropping provinces which implemented less ambitious

climate legislation instruments in other sectors (see Section I). Figure A.21 and

Table A.12 report the SDID results using the Meng et al. (2019a) dataset. The

results are higher when excluding Ontario, qualitatively unchanged when excluding

Alberta, and lower when dropping DAs in Quebèc. Conversely, results using the van

Donkelaar et al. (2019) are always higher in magnitude (Figure A.22 and Table A.13).

NAPS Locations: I select DAs corresponding to the location of NAPS monitoring

stations (see Figure A.1)30. I thus consider just those locations in which pollution

monitors have been established, thereby restricting the analysis to areas in which

pollution is likely to be a greater concern. Here, the size of the dataset is consid-

erably restricted: the cross-section of DAs kept in the treated pool counts just 25

observations, while 106 DAs are kept in the control pool. Once again, the results

(presented in Figure A.20 and Table A.11), are qualitatively similar to the main

specifications. Notably, the performance of the SDID estimator is not considerably

worsened on this much smaller sample, achieving a reasonable pre-treatment fit, and

therefore identifying a credible ATT.

Comparison with Saberian (2017): A further analysis is reported in Table A.14

and A.15. Here, I depart from using remotely sensed measurements, employing

monthly mean concentrations and the number exceedances of the daily safe threshold

of PM2.5
31 retrieved from NAPS monitoring stations. As in Saberian (2017), all

analyses employ the TWFE-DID estimator with unit and month-year fixed effects.

The results obtained by Saberian (2017) are only confirmed for a panel of the top 15

Canadian cities for 1998-2013 (Table A.15) for both concentrations and exceedances.

However, the detrimental effect of the carbon tax on air quality is not statistically

significant in any specification exploiting the full panel of NAPS stations, and when

extending the panel to 2016 (Table A.14). As shown in Section IV, the DID estimator

exhibits positive bias in this setting, which is the likely explanation for this puzzle,

together with the concern about bias introduced by the endogenous placement of

monitoring stations.

30I match DAs with all monitoring stations in the dataset, regardless of the date of establishment
of each monitoring station, in order to maximise observations.

31The daily safe threshold for PM2.5 is 25 µg/m3.
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VI. Mechanisms

A. Reductions in Transport Fuel Demand

The first candidate explanation for the observed reductions in particulate matter

concentrations is a change in consumer behaviour regarding transportation fuel.

Some evidence supporting this explanation is found in early analyses of the BC

carbon tax (e.g., Rivers and Schaufele, 2015; Lawley and Thivierge, 2018), which use

a limited post-intervention time period and only focus on gasoline consumption32.

On the contrary, fuel substitution away from gasoline and towards diesel is claimed

to be a potential mechanism behind the PM2.5 increases found in Saberian (2017),

notwithstanding the negative impacts found by the time series analysis of Bernard

and Kichian (2019) and the strong prevalence of gasoline vehicles among BC car

sales (see Figure A.25 and A.26).

I reconcile the evidence on the aggregate level effects of the carbon tax on transporta-

tion fuel demand by introducing a recently developed method for high-frequency time

series analysis: the Causal-ARIMA (C-ARIMA) estimator of Menchetti et al. (2022).

By exploiting features of ARIMA models, the method is especially appropriate to

analyse complex seasonal, nonstationary processes such as gasoline and diesel sales

observed monthly (see Figure A.23, panels A and B). C-ARIMA combines attractive

features from the DID and SCM estimator for the case in which no suitable control

unit is available33 and when the number of pre-intervention time periods is large34.

Under standard assumptions35, C-ARIMA is able to learn the treated unit’s time se-

ries dynamics and forecast it after the shock takes place. By using the forecasted series

as the treated unit’s counterfactual outcome, the method identifies two main sets of

causal effects: the temporal average causal effect and the cumulative treatment effect.

I run C-ARIMA separately for per capita monthly gasoline and diesel sales at the

aggregate BC level between January 1991 and December 2016. The intervention

date is July 2008, i.e. the specific month in which the BC carbon tax came into

effect. In Table 2, I report the results from estimations with and without a matrix

32Which accounts for most of the residential vehicle fleet (see Figure A.25) but does not include
heavy duty vehicles used in commercial and industrial operations (Bernard and Kichian, 2019).

33In my context, a pool of eligible control units is represented by other Canadian provinces. However,
other provinces exhibit diverging pre-intervention trends in gasoline sales (see Figure A.24) when
aggregating the TWFE-DID coefficients into an event study plot.

34As is the case in the monthly analysis of BC fuel consumption between January 1991 and December
2016, with 210 pre-intervention time periods.

35No temporal interference (i.e. absence of anticipation effects), covariates-treatment independence
and conditional stationarity (Menchetti et al., 2022).
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of business cycle controls36. Both the temporal average causal effect τ̂t and the

cumulative causal effect
∑T

t=tint
τ̂t are negative and statistically significant across all

specifications, highlighting a successful impact of the BC carbon tax in decreasing

fuel demand, consistently with Rivers and Schaufele (2015) and Bernard and Kichian

(2019). In my preferred specifications, columns (2) and (4), I find that the carbon

tax decreases per capita gasoline consumption by 4.7 litres in an average month (0.9

litres for diesel). Over the course of the entire 8.5 years post-treatment period, the

per capita reductions amount to 818 litres for gasoline and 93 litres for diesel. In

Figure A.23, the results from the estimation are reported graphically.

Table 2: C-ARIMA: Monthly Gasoline and Diesel Demand

Gasoline Sales Diesel Sales
(1) (2) (3) (4)

τ̂t -3.883 -4.675 -1.756 -0.912
(0.553) (0.506) (0.412) (0.236)∑T

t=tint
τ̂t -396.052 -818.405 -179.089 -92.983

(56.453) (14.962) (42.066) (24.093)

Controls - ✓ - ✓

Observations 312 312 312 312

Notes: The dependent variable is total monthly gasoline (diesel)
sales per capita (in litres) recorded in British Columbia between
January 1991 and December 2016. τ̂t denotes the Temporal
Average Causal Effect.

∑T
t=tint

τ̂t denotes the Cumulative Causal
Effect from the intervention period tint to the last period under
consideration T . Columns (2) and (4) include a matrix of monthly
province-level covariates, namely consumer price index, gasoline
(diesel) crude cost, population, unemployment rate, after tax
income and the US-CAD exchange rate. Standard errors in
parentheses are computed through 1000 bootstrap runs.

B. Commute Mode Switching

I analyse commute mode choices at the DA level as an additional mechanism driving

the main results. While commute mode is an imperfect measure of the number and

type of trips made by British Columbians, I can rely on the same administrative

level to the one used in the main analysis by retrieving information from the 2001,

2006, 2011, and 2016 Canadian censuses, thereby preserving granularity. Due to

36Namely, provincial population, unemployment, after tax income, exchange rate and the cost of
crude gasoline and diesel, respectively.
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the structure of the census data, collected at 5-year intervals, I am prevented from

using the SCM and SDID methodology. Since traditional DID estimation is likely to

be biased in my setting, I augment it by restricting the sample to the DAs which

receive positive weights in the main SDID regressions, effectively subsetting the data

to the same pool of observational units used in Section IV37. I further expand on

this matched DID strategy by estimating weighted regressions which use the SDID

unit weights. I weigh all treatment observations equally: ωtr = 1/Ntr and all control

observations according to the value of ωi they receive after the data-driven SDID

procedure38. I analyse the data separately using each category of commute mode as

the outcome variable in separate regressions.

In Table 3 and Table 4, I report simple and matched DID regression results employing

the share of commuters using high-emissions and public transport commute modes,

respectively 39. In all tables, column (1) is the baseline specification, a simple DID

regression with DA and year fixed effects and no controls, employing the full panel

of DAs across census years. In column (4), I add weather controls for precipitation,

maximum and minimum temperature, and wind speed, plus the natural logarithm

of population and median income. When employing the full pool of control DAs,

the first result of note is that British Columbian DAs experience an average 4.2%

reduction in the use of cars, taxis, and motorcycles, which rises to 4.7% when adding

controls. This reduction is almost specular to the increase in the share of commuters

using public transport, biking and walking to reach their workplace (Table A.16)40.

All results are confirmed and stronger in magnitude when considering the more

restrictive matched specifications: columns (2) and (5) restrict the specifications in

(1) and (4) to the DAs which receive positive weights in the main SDID regressions, in

order to establish whether the mechanisms are effectively retrieved when employing

the same set of observations on which the main ATT is estimated. Results are higher

in magnitude by about 1%, jumping to a 5.3% reduction in high-emission commute

modes in the case without controls, and also confirming the direction of the un-

matched DID potential bias. Here, the inclusion of control variables slightly dampens

37Section IV also shows how a matched DID strategy is able to address the likely upward bias in
the traditional DID regression.

38Further details are reported in Section B.
39As the low-emissions transport mode is the sum of public transport and zero-emissions modes,
I only report the results for public transport in the main text and present the aggregate low
emissions and the sub-split for zero-emissions in Table A.16, and Table A.17.

40As evidenced in Table 4 and Table A.17, most of this increase (3.5-3.9%) is due to a higher reliance
on public transport, while a residual share of 0.5-0.7% is due to a switch to active commuting.
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the impact to 5.2%; nonetheless, the specularity with the increase in low-emission

commute modes is preserved. My preferred specifications, in columns (3) and (6),

further augment the matched DID regressions by including the weights estimated in

the main SDID regression. The magnitude of the decrease in high emissions commute

modes and of the increase in public transport commute share are again higher, at

5.5% (5.2% with controls) and 4.2% (4.1%) respectively.

The hypothesis of a behavioural adjustment by BC citizens in response to the carbon

tax cannot thus be rejected; residents of BC’s DAs substitute from high-emissions

commute modes towards low-emissions ones, with public transport as the main

container for these substitutions.

Table 3: DID results for high emissions commute mode

High Emission Commute Mode
(1) (2) (3) (4) (5) (6)

DID -0.0417 -0.0527 -0.0549 -0.0466 -0.0519 -0.0516
(0.0105) (0.0095) (0.0103) (0.0102) (0.0106) (0.0109)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.87184 0.83989 0.84360 0.87595 0.84508 0.84847
Adjusted R2 0.82896 0.78629 0.79124 0.83400 0.79267 0.79721
Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of high emissions commutes. All regressions
include dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum
and minimum temperature, and wind speed, plus the natural logarithm of population and median income.
Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which receive positive weights in the main
SDID regression. Columns (3) and (6) additionally include the estimated SDID unit weights ωi as regression
weights. Standard errors in parentheses are clustered at the CMA level.
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Table 4: DID results for public transport

Public Transport Commute Mode
(1) (2) (3) (4) (5) (6)

DID 0.0352 0.0410 0.0417 0.0391 0.0422 0.0414
(0.0107) (0.0107) (0.0112) (0.0115) (0.0115) (0.0111)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.83768 0.78668 0.78011 0.84196 0.79197 0.78571
Adjusted R2 0.78336 0.71526 0.70650 0.78851 0.72160 0.71322
Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of public transport commutes. All regressions
include dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum
and minimum temperature, and wind speed, plus the natural logarithm of population and median income.
Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which receive positive weights in the main
SDID regression. Columns (3) and (6) additionally include the estimated SDID unit weights ωi as regression
weights. Standard errors in parentheses are clustered at the CMA level.
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VII. Environmental Justice Dynamics

In light of a growing literature in environmental justice (see Banzhaf et al., 2019; Cain

et al., 2024), I examine efficiency-equity trade-offs in the realisation of co-benefits,

inspecting whether the estimated air pollution reductions arise heterogeneously over

metropolitan areas. In the main analysis, the parameter identifying the effect of the

2008 BC carbon tax on PM2.5 emissions has always been assumed as constant across

treated units. Nonetheless, when dealing with disaggregated data within Census

Metropolitan Areas, a homogeneously estimated ATT is likely to mask substantial

heterogeneities across DAs which could be highly informative about the performance

of different locations within metropolitan areas.

A first channel to explore is certainly that of pre-existing pollution levels: standard

economic theory would in fact predict that emission abatement would happen first

where the marginal cost of reducing emissions is lower, i.e. where pre-existing pollu-

tion is higher (that is, lower-hanging fruits would be picked earlier). This avenue

is explored by Auffhammer et al. (2009) and Sager and Singer (2024), who find

substantially higher reductions in PM2.5 and PM10 due to the Clean Air Act in

non-attainment US census tracts that are more polluted in the three years preceding

the implementation of the policy. Nonetheless, the opposite result may also arise if

the rate of vehicle replacement is higher in less polluted areas or if more polluted

areas substitute more strongly towards less CO2-intensive, but more PM2.5-intensive

vehicles such as diesel automobiles or, crucially, diesel-powered public transport41.

In light of the results of Borck and Schrauth (2021) and Carozzi and Roth (2023), it

is also worth exploring whether heterogeneity in air pollution reductions arises at

different levels of the population density distribution: indeed, while densely populated

areas have been shown to experience higher concentrations of PM2.5 particulate,

usually population density is higher in city centres, where greater opportunities for

substitution away from cars may arise. Again, the nature of the eventual substitution

plays a crucial role in determining the direction of the realised effect42.

The most investigated avenue in studies focussing on air quality and environmental

justice dynamics is certainly that of racial disparities (e.g., Colmer et al., 2020;

41That is, if the implicit assumption of homogeneous abatement technology across locations is
removed.

42To the point of determining detrimental impacts in case the substitute transport mode is more
CO2 efficient but emits greater PM2.5 concentrations than the original one – such as the case of
diesel-powered engines substituting for gasoline ones.
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Jbaily et al., 2022; Currie et al., 2023; Sheriff, 2024; Sager and Singer, 2024). This

is possibly due to a relatively higher weight of US-centric studies in the literature,

with much fewer evidence on extra-US contexts. Nonetheless, as shown in Figure 1,

there is a high spatial correlation between the location of DAs with higher shares of

visible minority population and the pre-intervention PM2.5 distribution. It is thus

extremely important to (1) assess whether there is an ex ante racial disparity in

PM2.5 exposure in British Columbian metropolitan areas, (2) examine whether ex

post air quality racial EJ gaps fall or widen as a result of a market-based intervention

such as a carbon tax.

Lastly, a large body of research has shown that carbon pricing is regressive along

income and wealth dimensions (Poterba, 1991; Grainger and Kolstad, 2010; Sager,

2023), but its incidence depends on the destination of tax revenues (Metcalf, 2009;

Davis and Knittel, 2019). While this insight is well understood, constituting for

instance the basis for the BC low income climate action tax credit, there is much less

certainty about the role of realised air quality co-benefits in mitigating or exacerbat-

ing income regressiveness. Indeed, if a disproportionately large share of co-benefits

accrue to population in higher income brackets, there is an additional dimension of

carbon tax inequality that is not factored in projected governmental revenue rebates.

In Figure 4, the long term changes in PM2.5 concentrations are mapped out for the

three BC CMAs in my sample, to individuate areas which have withstood more

pronounced improvements. Confirming the traditional insights of the EJ literature

(Colmer et al., 2020; Jbaily et al., 2022) there appears to be a secular conver-

gence in air pollution concentrations: dense, central areas with higher initial PM2.5

concentrations and higher levels of socioeconomic deprivation see greater absolute

improvements in air quality.

These insights are only descriptive, as they do not take into account the potential

for similar secular trends in control areas, nor the impact of the BC carbon tax on

air pollution concentrations within a potential outcomes framework. Table A.18 and

Table A.19 report ex ante and ex post gaps in observed PM2.5 in British Columbia

and control CMAs along the top and bottom quintiles of three covariates describing

environmental justice dimensions: (1) baseline population density, (2) baseline share

of population belonging to a visible minority (as a measure of racial disparity), (3)
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∆ PM2.5 (µg m3)
−2.810
−2.096
−1.713
−0.992
0.943

∆ PM2.5 (µg m3)
−2.758
−2.138
−1.862
−1.218
−0.060

∆ PM2.5 (µg m3)
−2.604
−2.312
−1.698
−0.809
−0.109

Figure 4: Spatial distribution of the long term change in PM2.5 in BC CMAs.

Notes: This figure plots the geographical distribution of changes in PM2.5 concentrations for
the Vancouver (top panel), Victoria (middle panel) and Abbotsford (bottom panel) CMAs from
2000-2002 to 2014-2016 (three-year averages).
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baseline median income43. It is straightforward to assess how, before the implementa-

tion of the carbon tax, EJ gaps manifest along every dimension in both subsamples.

Denser, more racially diverse, and poorer areas of BC CMAs are comparatively more

polluted at the start of the sample, by 1.9-2.2 µg/m3, or 27-32% of the pre-treatment

PM2.5 average level in treated units. Similar EJ gaps are observed in control DAs,

with generally higher pollution levels across quintiles. For all DAs in treated and

control CMAs, EJ gaps reduce substantially in the last three years of the sample, to

1-1.3 µg/m3 in BC and 0.5-1.2 µg/m3 in control DAs.

Reading the statistics reported in Table A.18 and Table A.19 in conjunction, the

pollution convergence hypothesis is not only confirmed for BC, but emerges as a

common trend, with EJ gaps shrinking along every dimension across all Canadian

DAs in the sample. It is thus important to examine whether the 2008 BC carbon

tax has had heterogeneous contributions along these axes in order to determine

winners and losers from climate mitigation policy. While the long term air quality

improvements illustrated in Figure 4 accrue more strongly to relatively more deprived

areas, this consideration is not causally determined in the absence of an appropriate

counterfactual for each stratus of the EJ dimension under consideration.

To estimate the impact of the carbon tax on PM2.5 emissions at different points of

the distribution of EJ characteristics, I split the treatment sample into quintiles of

baseline44 PM2.5, population density, median income and racial diversity. As the

SDID methodology does not allow the inclusion of interaction terms in the estimation

procedure, I then run SDID separately for each quintile, allowing the data-driven

algorithm to select the combination of control DAs which best approximates the

outcome path of each quintile split of the treated units (plus a constant). In Figure 5,

I summarise the results graphically, reporting point estimates and 95% confidence

intervals at each quintile of the baseline EJ characteristics’ distributions.

Quintile-SDID results for baseline PM2.5 concentrations are presented in panel A of

Figure 5. It is immediate to infer that greater reductions arise in DAs with lower

pollution levels between 2005 and 2007. The bottom quintile of baseline pollution

indeed experience 2.2 times larger reductions with respect to the top quintile. Panel

43In Figure A.28, I also use Material Deprivation Index and the Theil Entropy Index for racial
diversity.

44For time-varying covariates I use the average of the three years prior to treatment as the baseline
value; for variables retrieved from the Canadian census, I use their 2006 values, i.e. the last
observation prior to the implementation of the carbon tax.
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(B), which shows the SDID effects for quintiles of baseline population density, is

consistent with the results for baseline pollution levels. Denser locations within

metropolitan areas see lower reductions of particulate matter with respect to less

dense DAs, underpinning a worsening of the pollution-density gap. Taken in con-

junction, these insights appear to confirm that the 2008 carbon tax was not effective

in curtailing traffic in more central areas within British Columbian metropolitan

areas, but rather had greater effect in peri-urban locations. More surprising are the

results in panel (C), which highlight the fact that relatively better off DAs within

metropolitan areas have experienced greater reductions, possibly reflecting an inverse

relationship between density and income, but more importantly signalling that the

pollution-income gap has increased as a result of the carbon tax. This result is a

clear confirmation of the hypothesis of co-benefits regressiveness, highlighting how

there is an additional distributional dimension that needs to be considered when

designing climate policy. Finally, panel (D) illustrates how metropolitan areas with

a lower proportion of visible minorities, i.e. less racially diverse districts, experience

greater gains in terms of realised air quality co-benefits, a result that is in agreement

with the findings for baseline pollution and income, which exhibit high correlation

with racial diversity. The positive findings of a burgeoning EJ literature focussed on

the black-white exposure gap in the US and on command-and-control regulations

(e.g., Currie et al., 2023; Sager and Singer, 2024) are then not confirmed in the case

of British Columbia and a market-based instrument.

It is important to notice how these results highlight pollution reductions that arise

at every quintile of the baseline EJ characteristics, compared to a synthetic DID

counterfactual of no carbon tax implementation. The carbon tax policy thus produces

Pareto-optimal air quality co-benefits, since every group experiences improvements in

pollution exposure after its implementation. Compared to a counterfactual scenario

of no policy45, the carbon tax is thus welfare-improving across the board, a result

which could be considered beneficial also in terms of environmental justice, with least-

advantaged groups observing important reductions in pollution exposure. However,

the unequal distribution of realised PM2.5 reductions widens the EJ gap along every

considered dimension. This confirms mixed evidence from the EJ literature, which

claims that while market-based instruments for climate mitigation can give rise to

inequality-improving air quality co-benefits (Hernandez-Cortes and Meng, 2023),

they can also worsen pre-existing disparities (Grainger and Ruangmas, 2018; Shapiro

and Walker, 2021; Cain et al., 2024) or result in no significant distributional changes

45As opposed for instance to the command-and-control counterfactual of Fowlie et al. (2012).
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(Fowlie et al., 2012). Economic instruments which specifically target air pollution,

such as command-and-control regulation46 have been shown to produce sustained

EJ gains (Currie et al., 2023), and may thus be coupled with market-based climate

mitigation policies47 in order to reap the full set of benefits from regulation and

reduce environmental inequality between groups, in addition to decreasing pollution

exposure across groups.
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Figure 5: Quintile-SDID results for Environmental Justice Gaps

Notes: Results of SDID regressions by quintile of baseline characteristics. Panel A) Quintiles of
baseline PM2.5; B) Quintiles of baseline population density; C) Quintiles of baseline median income;
D) Quintiles of visible minority share. ATT point estimates reported in red, with 95% confidence
intervals calculated with the Arkhangelsky et al. (2021) procedure with 200 bootstrap runs in grey
shading.

46A prime example of which are the National Ambient Air Quality Standards (NAAQS) enforced
by the US Clean Air Act.

47Additional instruments can be aimed at internalising the congestion externality in urban centres
and reducing local pollution (e.g., Gehrsitz, 2017; Pestel and Wozny, 2021; Sarmiento et al., 2023),
with a specific focus on policy impacts on disadvantaged communities. Further co-benefits can be
generated by public transport electrification and incentives for alternative transport modes, as
low-income and disadvantaged households are relatively more cash and credit constrained.
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VIII. Health Gains

In order to understand the magnitude of the economic co-benefits from air pollution

reductions arising due to the 2008 carbon tax, I convert the quintile SDID PM2.5 esti-

mates into a monetary quantification of the associated health gains. Notwithstanding

the relatively low concentrations of particle pollution in the the British Columbian

context, where pre-treatment air quality was of substantial better quality than in

other North American locations (e.g., in the USA), it is important to note that the

concept of “safe” thresholds for particle pollution concentrations is more normative

than positive. Indeed, some studies (e.g., Krewski et al., 2009) have highlighted that

the marginal benefits from abatement may be nonlinear in baseline concentrations,

with lower gains from abatement at higher levels of baseline air pollution. Hence, any

improvement in air quality is likely to carry significant benefits in terms of reductions

in mortality rates; moreover, the estimates reported in this section are a lower bound

of the gains from local pollution reductions, as PM2.5 has been shown to have a

multidimensional impact, ranging from health to productivity, to cognition and the

formation of human capital (Aguilar-Gomez et al., 2022).

Drawing from Fowlie et al. (2019) and Carozzi and Roth (2023), my approach consists

of two steps. I first estimate the impact of a reduction in PM2.5 concentrations in

terms of mortality reductions, using concentration-response (“hazard”) functions

derived from the environmental health literature. Second, I retrieve the central

estimate of the willingness to pay (WTP) to avoid a premature death from Health

Canada (2021) and Chestnut and De Civita (2009)48, and multiply the mortality

reductions estimated in the first step by the central estimate of the Value of a

Statistical Life (VSL), equal to $6.5 million in 2007 Canadian dollars, for each DA

in the census metropolitan areas of Vancouver, Victoria, and Abbotsford.

The traditional form of the Cox proportional hazard model used in the environmental

health literature is the log-linear regression reported in Fowlie et al. (2019):

ln(γ) = ζ + αPM2.5 (5)

Where ln(γ) is the natural logarithm of mortality risk, ζ = ln(Z) , and PM2.5 are the

48It must be noted that the reported estimate for the Value of a Statistical Life does not reflect
directly the economic value of an individually identified person’s life, but rather the aggregation
of estimates of the WTP for a small reduction in mortality risk. Using the VSL central estimate
of $6,500,000, for example, the average Canadian would be willing to pay $65 to reduce the risk
of premature death by 1 out of 100,000.
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local pollution concentrations. The term Z is a vector of covariates other than PM2.5

which impact mortality, and can be rewritten as Z = Z0 + exp(β1x1 + ...+ βnxn),

with Z0 being the mortality risk when all covariates are zero. Indicating γ0i as the

baseline mortality risk, and rearranging terms49, the change in mortality rate ∆γi

can be related to the change in pollution levels ∆PM2.5i with the following equation:

∆γi = γ0i

(
1− 1

eα∆PM2.5i

)
(6)

In order to find the total number of deaths for each DA associated with the above

change in mortality rate ∆γi, this quantity needs to be multiplied by the population

of each DA50:

∆Deathsi = Populationi

[
γ0i

(
1− 1

eα∆PM2.5i

)]
(7)

And finally, the monetary health gains in terms of mortality reductions at the DA

level, ∆Yi, are obtained by multiplying the above estimates by the VSL figure of

$6.5 million CAD obtained from Health Canada (2021):

∆Yi = V SL ∗∆Deathsi (8)

Hence, in order to estimate the model outlined in Equation 6, and thus obtain

mortality rate changes at the DA level, I first need to estimate the baseline mortality

rate γ0i. Consistently with the literature, I obtain data for deaths due to lung

cancers, all circulatory diseases, and all respiratory diseases from the ICD.10 selected

causes of death at the CMA level from Statistics Canada (2021a)51. I divide total

deaths due to the listed causes by total CMA population, and assign the resulting

(baseline) mortality rates to all DAs in a given CMA. The parameter α is usually not

directly indicated in epidemiology studies, which instead report the relative risk (RR)

increase due to a given increase in PM2.5. For instance, Lepeule et al. (2012) report

an all-cause RR of 1.14 associated with a ∆PM2.5 of 10 µg/m3, while Krewski et al.

(2009)’s estimate is 1.06. However, it is straightforward to retrieve α by exploiting

the relationship between RR and ∆PM2.5: α = ln(RR)/∆PM2.5.

49The derivation is as follows (Carozzi and Roth, 2023):

∆γ = Z(eαPM0
2.5 − eαPM1

2.5) → ∆γ = ZeαPM0
2.5

[
1− e−α(PM0

2.5−PM1
2.5)
]

50I use the baseline population level, that is, the population of each DA in the year 2008.
51This is the smallest geographic unit for which the data are available.
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I employ these two estimates, in combination with the estimated PM2.5 reductions for

each quintile of the pre-intervention PM2.5 distribution, in order to calculate the gains

from mortality reductions at the DA level for the three CMAs included in the treated

sample: Vancouver, Victoria and Abbotsford. In Figure 6, I visually report the results

of this exercise for each CMA, using RR = 1.14 as estimated by Lepeule et al. (2012)52.

The left panel maps the estimated mortality reductions per 1000 people (estimated

according to Equation 7), while the right panel shows the associated per capita

health gains, estimated via Equation 8. The median per capita monetary gains due

to the estimated reductions in PM2.5 are large: $198 when using the Lepeule et al.

(2012) RR and $88 with the RR from Krewski et al. (2009)53.

The monetary value of per capita air quality co-benefits from the BC carbon tax is

1.7 times of the per capita low income climate action tax credit, i.e. the carbon tax

rebate for low-income families54. Moreover, the total monetary value of co-benefits

ranges between $507.2 million and $1.03 billion annually, or 40-81% of annual carbon

tax revenues once the tax reached its $30/tCO2 level in 2012 (Ministry of Finance,

2013). The spatial distribution of these gains shows substantial heterogeneity: in par-

ticular, it is once again striking how air pollution co-benefits seem to be concentrated

in peri-urban areas and positively correlated with income (see also Figure A.30).

The results confirms that co-benefits from carbon taxation appear to be regressively

distributed in metropolitan areas, with greater air quality improvements arising in

higher income, low pollution DAs, underpinning increasing environmental justice

gaps, as also evidenced in Section VII.

52Visual results using the RR estimate from Krewski et al. (2009) are reported in Figure A.29.
53The same gains are $402 and $178, respectively, if calculated using the ATT estimated with the
van Donkelaar et al. (2019) PM2.5 dataset instead of Meng et al. (2019a).

54For this comparison, I use the last revision of the low income climate action tax credit, amounting
to $115.50 per adult plus $34.50 per child (Ministry of Finance, 2013).
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Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

0 to 28
28 to 83
83 to 259
259 to 675
675 to 1,060

Health gains per capita (2007$), 
RR from Lepeule et al. (2012)

92.3 to 135.1
135.1 to 187.8
187.8 to 199.3
199.3 to 206.1
206.1 to 211.4

Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

0.0 to 35.4
35.4 to 86.6
86.6 to 201.5
201.5 to 381.8
381.8 to 448.3

Health gains per capita (2007$), 
RR from Lepeule et al. (2012)

139.7 to 204.4
204.4 to 284.1
284.1 to 301.4
301.4 to 311.8
311.8 to 319.8

Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

1.8 to 27.8
27.8 to 71.9
71.9 to 145.0
145.0 to 311.5
311.5 to 393.8

Health Gains per capita (2007$), 
RR from Lepeule et al. (2012)

112.4 to 164.5
164.5 to 228.6
228.6 to 242.5
242.5 to 250.8
250.8 to 257.3

Figure 6: Mortality reductions and monetary health gains

Notes: Spatial distribution of mortality reductions per 1000 residents (left panel) and health gains
per capita (right panel) using the RR estimates from Lepeule et al. (2012), for the Vancouver (top
row), Victoria (middle row) and Abbotsford (bottom row) CMAs.
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IX. Conclusions

This paper connects two areas of extreme importance in environmental economics.

Air pollution co-benefits from carbon taxation are likely to be as large in magnitude

as to partially or fully offset the costs of climate mitigation. Incorporating the

monetary value of air quality improvements in cost-benefit analyses of carbon taxes

is essential in order to correctly calibrate them and enhance their attractiveness.

Conversely, environmental justice implications of market-based instruments are an

often overlooked dimension due to the focus on efficiency, rather than equity. Ignoring

potentially regressive consequences in terms of the societal distribution of co-benefits

could hinder public support towards climate policy.

I show that the introduction of carbon pricing can significantly improve local air

quality. After the implementation of the 2008 carbon tax, PM2.5 levels dropped

by 5.2-10.9% in British Columbian dissemination areas, compared to a no policy

counterfactual obtained through the synthetic difference-in-differences estimator.

The air quality improvement is driven by reductions in fuel demand and by transport

mode switching, mostly in favour of public transport. In terms of environmental

justice, alongside evidence of Pareto optimal improvements for all segments of the

population, pollution reduction dynamics are significantly regressive, with greater

effects found in less polluted, less dense, less racially diverse areas and in richer

neighbourhoods. Finally, I convert the improvements in air quality into reductions in

mortality rates and monetary health gains from co-benefits of carbon taxation. With

a median estimate of $198 per capita, the health gains are large and comparable

to the rebates offered to low-income families in British Columbia to mitigate the

impact of the tax on their disposable income, as well as to the total annual revenue

from the carbon tax at maturity.

These results highlight an equity dimension of the regressive nature of carbon pricing,

showing how environmental justice improvements are not a necessary consequence

of market-based instruments. While addressing complementary global and local

environmental externalities via a carbon tax can yield significant air pollution and

health co-benefits in addition to climate mitigation, regressive outcomes ought to

be considered. Instruments designed to attenuate inequitable effects may then be

designed in advance of the deployment of carbon pricing in order to help closing

environmental justice gaps and reap greater policy gains.
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APPENDIX

A1. Descriptive Statistics and Graphs

Figure A.1: Spatio-temporal placement of ground air pollution monitors

Notes: Availability of PM2.5 readings in the National Atmospheric Surveillance Program database
between 2000 and 2018. Lighter colours and larger dot sizes indicate higher availability of readings
(monitoring stations which were added earlier).
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Figure A.2: Satellite and ground PM2.5 readings

Notes: Scatterplot of satellite PM2.5 (Meng et al., 2019a) (y-axis) and PM2.5 from NAPS monitoring
stations (x-axis). Both measures are in µg/m3. The correlation coefficient is 0.597.
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Figure A.3: Satellite and ground PM2.5 readings

Notes: Density plot of satellite PM2.5 (Meng et al., 2019a) (y-axis) and PM2.5 from NAPS monitoring
stations (x-axis). Both measures are in µg/m3.
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Figure A.4: Two remotely sensed PM2.5 measures

Notes: Scatterplot of satellite PM2.5 (Meng et al., 2019a) (x-axis) vs Satellite PM2.5 (van Donkelaar
et al., 2019) (y-axis). Both measures are in µg/m3. The correlation coefficient is 0.729.
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Figure A.5: Two remotely sensed PM2.5 measures

Notes: Density plot of satellite PM2.5 (Meng et al., 2019a) (x-axis) vs Satellite PM2.5 (van Donkelaar
et al., 2019) (y-axis). Both measures are in µg/m3.
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Table A.1: Summary Statistics, 2000-2007

Control Provinces British Columbia

Variable N Mean SD N Mean SD

PM2.5 (van Donkelaar et al., 2019) 175870 9.52 1.54 27920 8.06 1.19

PM2.5 (Meng et al., 2019a) 175870 8.61 2.07 27920 6.95 1.39

Pop. Density (Rose et al., 2020) 175912 3358.26 3375.33 27920 3169.94 2136.98

Median Income 43978 26341.65 9088.59 6980 25055.65 8090.75

Minority Share 43709 18.07 20.7 6926 34.25 26.22

Theil’s Diversity Entropy Index 43978 0.53 0.47 6980 0.79 0.44

Material Deprivation Index 20606 46.48 28.60 3313 43.57 28.12

High Emission Commute % 43701 74.93 18.33 6926 77.64 16.37

Low Emission Commute % 43701 24.52 18.26 6926 21.62 16.26

Public Transport Commute % 43701 17.02 14.48 6926 13.06 10.68

Zero Emission Commute % 43701 7.50 9.43 6926 8.56 10.79

Precipitation (Abatzoglou et al., 2018) 175768 74.05 21.74 27920 131.20 37.06

Max Temperature (Abatzoglou et al., 2018) 175768 11.93 1.58 27920 14.55 0.66

Min Temperature (Abatzoglou et al., 2018) 175768 1.74 2.50 27920 6.46 0.62

Wind Speed (Abatzoglou et al., 2018) 175768 3.63 0.49 27920 2.98 0.16

Table A.2: Summary Statistics, 2008-2018

Control Provinces British Columbia

Variable N Mean SD N Mean SD

PM2.5 (van Donkelaar et al., 2019) 241865 8.15 1.51 38390 6.09 0.95

PM2.5 (Meng et al., 2019a) 197888 7.35 1.73 31410 6.07 1.10

Population Density (Rose et al., 2020) 241879 3614.39 3365.36 38390 3478.58 2305.69

Median Income 43978 33324.06 11718.48 6980 31772.63 9765.79

Minority Share 43825 23.84 22.86 6958 40.2 27.15

Theil’s Diversity Entropy Index 43978 0.65 0.51 6980 0.89 0.47

High Emission Commute % 43806 74.39 20.20 6955 72.94 18.75

Low Emission Commute % 43806 25.06 20.12 6955 26.25 18.61

Public Transport Commute % 43806 18.85 15.89 6955 18.38 13.38

Zero Emission Commute % 43806 6.21 10.15 6955 7.87 11.32

Precipitation (Abatzoglou et al., 2018) 241681 77.57 21.99 38390 134.58 37.33

Max Temperature (Abatzoglou et al., 2018) 241681 12.32 1.76 38390 14.58 0.86

Min Temperature (Abatzoglou et al., 2018) 241681 2.11 2.59 38390 6.56 0.80

Wind Speed (Abatzoglou et al., 2018) 241681 3.64 0.48 38390 3.00 0.19
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A2. Additional Details on the Empirical Strategy

A. The DID Parallel Trends Assumption

Table A.3: Placebo DID regressions on 2000-2007 data

(1) (2)
DID DID

τ̂ -0.3754 -1.355
(0.1362) (0.2390)

Unit FE ✓ ✓
Year FE ✓ ✓

Nobs 203736 203736

Notes: All point estimates represent the placebo impact of a carbon tax
assigned in 2004 during the 2005-2007 placebo post-treatment period. All
regressions use 2000-2007 data. Column (1) uses the Meng et al. (2019a)
PM2.5 data, and column (2) uses the van Donkelaar et al. (2019) PM2.5

data. Standard errors in parentheses are clustered at the CMA level.

Figure A.6: PM2.5 pre-trends differences (Meng et al., 2019a)

Notes: Trends and observations of satellite PM2.5 in British Columbia and an average of all control
provinces, between 2000 and 2016. The implementation of the carbon tax in 2008 is highlighted by
the dashed vertical line. Observed data is jittered around the observation year to enhance legibility.
A placebo FE regression of PM2.5 on the traditional DID indicator with data limited to 2000-2008
and treatment assigned in 2004 identifies a negative and significant effect, indicating a likely failure
of the parallel trends hypothesis.
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Figure A.7: PM2.5 pre-trends differences (van Donkelaar et al., 2019)

Notes: Trends and observations of satellite PM2.5 in British Columbia and an average of all control
provinces, between 2000 and 2018. The implementation of the carbon tax in 2008 is highlighted by
the dashed vertical line. Observed data is jittered around the observation year to enhance legibility.

B. Comparison between TWFE-DID, SCM and SDID

In order to formally explain how SDID combines features from TWFE-DID and SCM,

let me consider a balanced panel with N observations and T time periods. In the

British Columbian case, the outcome variable is PM2.5it, and the binary treatment is

Dit. Let i = 1, ..., Ntr be the treated DAs in BC, and i = Ntr + 1, ..., Nco be the DAs

in control provinces. The baseline TWFE-DID regression problem can be expressed

as:

(τ̂ didµ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(PM2.5it − µ− ηi − θt − τDit)
2

}
(9)

Which is solved without the use of unit or time-specific weights, but with the inclusion

of unit and time-specific fixed effects ηi and θt as also illustrated in Equation 1. The

SCM estimator, instead, does not employ unit fixed effects, but includes time fixed

effects and unit-specific weights ωsc
i :

(τ̂ sc, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(PM2.5it − µ− θt − τDit)ω̂
sc
i

}
(10)

Finally, the SDID estimator combines features from Equation 9 and Equation 10.

Unit weights ω̂sdid
i are chosen such that the pre-treatment outcome path of control
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DAs are parallel to those of the treated units55:

ω0 +
Nco∑

i=Ntr+1

ω̂sdid
i PM2.5it ≈

1

Ntr

Ntr∑
i=1

PM2.5it (11)

Moreover, time weights λ̂sdid
t need to ensure that the pre-treatment levels for the

control units differs from the post-treatment levels for the same units only by a

constant. Letting t = 1, ..., T be the total length of the panel, Tpre be the number of

pre-intervention periods, and Tpost be the number of post-intervention periods, the

condition can be expressed as:

λ0 +

Tpre∑
t=1

λ̂sdid
t PM2.5it ≈

1

Tpost

T∑
t=Tpre+1

PM2.5it (12)

Thus, the regression problem for the SDID estimator can be expressed as a weighted

TWFE-DID problem which incorporates unit and time-specific fixed effects ηi and

θt, plus unit and time-specific weights ωi and λt, as illustrated in Equation 13:

(τ̂ sdid, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(Yit − µ− ηi − θt − τDit)
2ω̂sdid

i λ̂sdid
t

}
(13)

55Unit-specific weights are found using a regularisation parameter ζ, as in Doudchenko and Imbens
(2016), which aids the estimation strategy by increasing the dispersion of the weights and ensuring
their uniqueness. When the intercept ω0 and the regularisation parameter are set to 0, the unit
weights ωi correspond to the SCM weights in Abadie et al. (2010). For further details on the
procedure used to estimate ζ, please refer to Arkhangelsky et al. (2021).
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A3. Additional Results and Robustness Checks

A. Matched Difference-in-Differences Plots

Figure A.8: Pre-trends in PM2.5 after CEM (1)

Notes: Trends and observations of satellite PM2.5 (Meng et al., 2019a) in British Columbia and an
average of all control provinces, between 2000 and 2016. The implementation of the carbon tax in
2008 is highlighted by the dashed vertical line. Observed data is jittered around the observation
year to enhance legibility. The data results from a Coarsened Exact Matching procedure on baseline
PM2.5 levels.

Figure A.9: Pre-trends in PM2.5 after CEM (2)

Notes: Trends and observations of satellite PM2.5 (Meng et al., 2019a) in British Columbia and an
average of all control provinces, between 2000 and 2016. The implementation of the carbon tax in
2008 is highlighted by the dashed vertical line. Observed data is jittered around the observation
year to enhance legibility. The data results from a Coarsened Exact Matching procedure on baseline
PM2.5 levels and baseline levels of population density, median income, high emission commute
mode share, and road density.
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B. Composition of SDID Control Pools
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Figure A.10: Synthetic BC at the DA-level (Meng et al., 2019a)

Note: Composition of the synthetic DID unit of Figure 2. Individual DA weights are aggregated
up to the CMA level.
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Figure A.11: Synthetic BC at the DA-level (van Donkelaar et al., 2019)

Note: Composition of the synthetic DID unit of Figure A.12. Individual DA weights are aggregated
up to the CMA level.
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C. Main results with van Donkelaar et al. (2019) PM2.5 data
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Figure A.12: The impact of the 2008 carbon tax on changes in PM2.5, van Donkelaar
et al. (2019) outcome variable

Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with van Donkelaar
et al. (2019) data. Time weights λt are represented in light red at the bottom of the pre-intervention
panel. The curved arrows graphically represent the ATT over the post-intervention period.

Table A.4: The 2008 carbon tax and changes in PM2.5, van Donkelaar
et al. (2019) outcome variable

(1) (2) (3)
DID SCM SDID

τ̂ -0.4954 -0.7087 -0.8896
(0.0085) (0.1540) (0.0300)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 483873 483873 483873

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2018 post-treatment period, using data from van
Donkelaar et al. (2019) as the outcome. Standard errors are calculated
using the bootstrap variance estimation algorithm described in Arkhangelsky
et al. (2021) with 200 replications. All regressions use 2000-2018 data.
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D. Accounting for Measurement Error à la Fowlie et al. (2019)
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Figure A.13: The impact of 2008 carbon tax on changes in predicted PM2.5 accounting
for measurement error

Note: Graphical results from SDID for PM2.5 concentrations, with Meng et al. (2019a) data (left
panel) and van Donkelaar et al. (2019) data (right panel). Time weights λt are represented in light
red at the bottom of the pre-intervention panel. The curved arrows graphically represent the ATT
over the post-intervention period.

Table A.5: The 2008 carbon tax and changes in PM2.5, accounting for
measurement error

(1) (2)
SDID SDID

τ̂ -0.260 -0.847
(0.010) (0.027)

Unit FE ✓ ✓
Year FE ✓ ✓

ωi ✓ ✓
λt ✓ ✓

Nobs 432939 432939

Notes: Point estimates represent the average impact of the 2008 carbon tax
using data from Meng et al. (2019a) (column 1) and van Donkelaar et al.
(2019) (column 2) as the outcome, during the 2009-2016 post-treatment
period. Standard errors are calculated using the bootstrap variance estima-
tion algorithm described in Arkhangelsky et al. (2021) with 200 replications.
All regressions use 2000-2016 data.
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E. Wildfires
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Figure A.14: The impact of the 2008 carbon tax on changes in PM2.5, excluding the
wildfire season

Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with monthly
van Donkelaar et al. (2019) data excluding May, June, July and August. The 2008 carbon tax is
denoted by a black vertical line. Pre-treatment time weights λt are denoted in pink.

Table A.6: The 2008 carbon tax and changes in PM2.5 accounting for
wildfire-prone months

(1) (2) (3)
DID SCM SDID

τ̂ -0.8696 -0.8961 -0.9222
(0.0099) (0.1045) (0.0415)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 483873 483873 483873

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2018 post-treatment period, using monthly data from
van Donkelaar et al. (2019) excluding the months of May, June, July and
August as the outcome. Standard errors are calculated using the bootstrap
variance estimation algorithm described in Arkhangelsky et al. (2021) with
200 replications. All regressions use 2000-2018 data.
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F. Post-treatment period limited to 2013
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Figure A.15: The impact of 2008 carbon tax on changes in PM2.5, 2000-2013 sample

Note: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al.
(2019a) data, dataset restricted to 2013. Time weights λt are represented in light red at the
bottom of the pre-intervention panel. The curved arrows graphically represent the ATT over the
post-intervention period.

Table A.7: The 2008 carbon tax and changes in PM2.5, 2000-2013
sample

(1) (2) (3)
DID SCM SDID

τ̂ 0.0547 -0.2723 -0.6703
(0.0081) (0.0803) (0.0341)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 432939 432939 432939

Notes: All point estimates represent the average impact of the 2008 carbon
tax using data fromMeng et al. (2019a) as the outcome, during the 2009-2013
post-treatment period. Standard errors are calculated using the bootstrap
variance estimation algorithm described in Arkhangelsky et al. (2021) with
200 replications. All regressions use 2000-2013 data.
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G. DAs in the Vancouver CMA
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Figure A.16: The impact of the 2008 carbon tax on changes in PM2.5 for DAs in the
Vancouver CMA.

Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al.
(2019a) data, dataset restricted to DAs in the Vancouver CMA. Time weights λt are represented in
light red at the bottom of the pre-intervention panel. The curved arrows graphically represent the
ATT over the post-intervention period.

Table A.8: The 2008 carbon tax and changes in PM2.5 for DAs in the
Vancouver CMA

(1) (2) (3)
DID SCM SDID

τ̂ 0.4061 -0.1062 -0.3014
(0.0071) (0.0702) (0.0225)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 422467 422467 422467

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period, using the outcome variable
from Meng et al. (2019a) and restricting the sample to DAs in the Vancouver
CMA. Standard errors are calculated using the bootstrap variance estimation
algorithm described in Arkhangelsky et al. (2021) with 200 replications. All
regressions use 2000-2016 data.
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H. DAs in the Abbotsford and Victoria CMAs
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Figure A.17: The impact of the 2008 carbon tax on changes in PM2.5 for DAs in the
Abbotsford and Victoria CMAs.

Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al.
(2019a) data, dataset restricted to DAs in the Abbotsford and Victoria CMAs. Time weights λt are
represented in light red at the bottom of the pre-intervention panel. The curved arrows graphically
represent the ATT over the post-intervention period.

Table A.9: The 2008 carbon tax and changes in PM2.5 for DAs in the
Abbotsford and Victoria CMAs

(1) (2) (3)
DID SCM SDID

τ̂ 0.3291 -0.4754 -0.8291
0.0122 0.0453 0.0381

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 384081 384081 384081

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period, using the outcome variable
from Meng et al. (2019a) and restricting the sample to DAs in the Vancouver
CMA. Standard errors are calculated using the bootstrap variance estimation
algorithm described in Arkhangelsky et al. (2021) with 200 replications. All
regressions use 2000-2016 data.
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I. Excluding DAs along the 2009 Canada Line expansion

DAs within 1 Km of Canada Line stations

Figure A.18: Vancouver CMA with DAs along the Canada Line

Notes: Grey shading denotes all DAs in the Vancouver CMA. Red shading denotes Vancouver
CMA DAs located within 1 Km of Canada Line stations.
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Figure A.19: The impact of the 2008 carbon tax on changes in PM2.5 excluding DAs
along the Canada Line

Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al.
(2019a) data, excluding DAs along the Canada Line. Time weights λt are represented in light red
at the bottom of the pre-intervention panel. The curved arrows graphically represent the ATT over
the post-intervention period.

Table A.10: The 2008 carbon tax and changes in PM2.5 excluding DAs
along the Canada Line

(1) (2) (3)
DID SCM SDID

τ̂ 0.3874 -0.1695 -0.3801
0.0069 0.0804 0.0219

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 429760 429760 429760

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period, using the outcome vari-
able from Meng et al. (2019a) and excluding DAs along the Canada Line.
Standard errors are calculated using the bootstrap variance estimation
algorithm described in Arkhangelsky et al. (2021) with 200 replications. All
regressions use 2000-2016 data.
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J. DAs matching NAPS Monitoring Stations
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Figure A.20: The impact of the 2008 carbon tax on changes in PM2.5 for DAs matching
NAPS locations

Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al.
(2019a) data, dataset restricted to DAs matching NAPS monitoring stations’ locations. Time
weights λt are represented in light red at the bottom of the pre-intervention panel. The curved
arrows graphically represent the ATT over the post-intervention period.

Table A.11: The impact of the 2008 carbon tax on changes in PM2.5

for DAs matching NAPS locations.

(1) (2) (3)
DID SCM SDID

τ̂ 0.132 -0.865 -0.288
(0.117) (0.128) (0.097)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 2227 2227 2227

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period, using the outcome variable
from Meng et al. (2019a), and restricting the sample to DAs matching
NAPS monitoring stations’ locations. Standard errors are calculated using
the bootstrap variance estimation algorithm described in Arkhangelsky
et al. (2021) with 200 replications. All regressions use 2000-2016 data.
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K. Leave-one-out Tests
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Figure A.21: The impact of the 2008 carbon tax on changes in PM2.5: leave-one-out,
using Meng et al. (2019a) data

Notes: Graphical results from SDID for PM2.5 concentrations, with Meng et al. (2019a) data,
leave-one-out tests (iteratively excluding Quebéc, Alberta and Ontario). Time weights λt are
represented in light red at the bottom of the pre-intervention panel. The curved arrows graphically
represent the ATT over the post-intervention period.

Table A.12: The impact of the 2008 carbon tax on changes in PM2.5:
iterative leave-one-out tests using Meng et al. (2019a) data

(1) (2) (3)
SDID SDID SDID

τ̂ -0.0681 -0.1955 -0.6186
0.0106 0.0250 0.0127

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 305604 396100 254490

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period, using the outcome variable
from Meng et al. (2019a), and iteratively excluding Quebéc (column 1),
Alberta (column 2), and Ontario (column 3) from the control pool. Standard
errors are calculated using the bootstrap variance estimation algorithm
described in Arkhangelsky et al. (2021) with 200 replications. All regressions
use 2000-2016 data.
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Figure A.22: The impact of the 2008 carbon tax on changes in PM2.5: leave-one-out
using van Donkelaar et al. (2019) data

Notes: Graphical results from SDID for PM2.5 concentrations, with van Donkelaar et al. (2019)
data, leave-one-out tests (iteratively excluding Quebéc, Alberta and Ontario). Time weights λt are
represented in light red at the bottom of the pre-intervention panel. The curved arrows graphically
represent the ATT over the post-intervention period.

Table A.13: The impact of the 2008 carbon tax on changes in PM2.5:
iterative leave-one-out tests using van Donkelaar et al. (2019) data

(1) (2) (3)
SDID SDID SDID

τ̂ -1.0347 -0.6956 -1.7498
0.0242 0.0277 0.0188

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 312953 396100 254490

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period, using the outcome variable
from van Donkelaar et al. (2019), and iteratively excluding Quebéc (column
1), Alberta (column 2), and Ontario (column 3) from the control pool.
Standard errors are calculated using the bootstrap variance estimation
algorithm described in Arkhangelsky et al. (2021) with 200 replications. All
regressions use 2000-2016 data.
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L. Comparison with Saberian (2017)

Table A.14: DID with NAPS monitors, 1998-2016

η PM2.5 µ PM2.5 η PM2.5 µ PM2.5

(1) (2) (3) (4)

Carbon Tax 0.0396 0.0364 0.0248 0.0001
(0.0314) (0.0219) (0.0180) (0.0122)

City FE ✓ ✓ ✓ ✓
Month*Year FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Sample Top 15 Top 15 Full Full

Observations 3,372 3,329 16,116 15,249
Adjusted R2 0.44870 0.57613 0.32740 0.51854
Dependent variable mean 4.0168 7.1371 3.9793 7.1407

Notes: η is the number of PM2.5 monthly safe threshold exceedances. µ is the average monthly
PM2.5 concentration. Controls include the retail price of gasoline and diesel, unemployment
rate, after tax income, maximum and minimum temperature, precipitation and wind speed.
Top 15 cities are Vancouver, Calgary, Edmonton, Halifax, Hamilton, Ottawa, Saskatoon, St.
Johns, Toronto, Windsor, Winnipeg, Kitchener, London, St. Catharines, Oshawa and Regina.
Full panel includes all NAPS air quality monitoring stations. Standard errors in parentheses
are clustered at the City level.

Table A.15: DID with NAPS monitors, 1998-2013

η PM2.5 µ PM2.5 η PM2.5 µ PM2.5

(1) (2) (3) (4)

Carbon Tax 0.0646 0.0422 0.0196 0.0030
(0.0299) (0.0185) (0.0240) (0.0160)

City FE ✓ ✓ ✓ ✓
Month*Year FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Sample Top 15 Top 15 Full Full

Observations 2,796 2,764 12,744 12,006
Adjusted R2 0.49176 0.61504 0.33748 0.54680
Dependent variable mean 4.0303 7.0618 4.1321 7.1454

Notes: η is the number of PM2.5 monthly safe threshold exceedances. µ is the average monthly
PM2.5 concentration. Controls include the retail price of gasoline and diesel, unemployment
rate, after tax income, maximum and minimum temperature, precipitation and wind speed.
Top 15 cities are Vancouver, Calgary, Edmonton, Halifax, Hamilton, Ottawa, Saskatoon, St.
Johns, Toronto, Windsor, Winnipeg, Kitchener, London, St. Catharines, Oshawa and Regina.
Full panel includes all NAPS air quality monitoring stations. Standard errors in parentheses
are clustered at the City level.
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A4. Additional Details on Mechanisms

A. Fuel Demand
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Figure A.23: C-ARIMA Results for Fuel Sales

Note: Graphical results from the C-ARIMA regressions on monthly gasoline and diesel sales.
Panel (A) and (B) show the observed and forecasted gasoline and diesel sales time series for the full
post-intervention horizon. Panels (C) and (D) represent the gap between observed and forecasted
series for gasoline and diesel sales. 95% confidence intervals in grey shading using robust standard
errors.
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Figure A.24: Event Study Result for Fuel Sales

Note: Event study regression of monthly gasoline sales at the province level, 1990-2016 data. 95%
confidence interval in grey shading using standard errors clustered at the province level.
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B. Commute Mode Switching Empirical Analysis

Ideally, when concerned with the estimation of PM2.5 reductions arising from the

implementation of carbon pricing, I would look at DA-level reductions in motor

fuel sales or in the quantity of vehicle kilometres travelled; however, these data

are not available at the desired level of granularity for Canada between 2000 and

2018. Moreover, while Canadian province-level data on vehicle sales disaggregated

by type of fuel is only available from 2011 onwards, the post-2011 trends in sales

of diesel vehicles are relatively flat (See Figure A.26), and the landscape seems

to be dominated by gasoline cars (See Figure A.25), suggesting that an eventual

gas-to-diesel switch caused by the carbon tax incentive would have produced all of

its results between July 2008 and January 2011 before bottoming out; the evidence

for this conclusion is not very strong as a result. Another potential mechanism

behind an increase in air pollution could derive from an exceptionally high rate of

replacement in BC’s car fleet with respect to other Canadian provinces, caused by the

willingness of BC’s residents to increase their cars’ fuel efficiency and realise savings

at the pump. If the savings per each tank refuel were sufficient to offset the increase

in gasoline prices due to the carbon tax, British Columbian residents could have

potentially travelled more kilometres than prior to the tax, thereby increasing road

congestion and hence pollution due to a rebound effect. As shown in Figure A.27

there has indeed been a rapid increase in truck and SUV sales in British Columbia

after 2008; however, this increase is paralleled by similar jumps in truck sales in

all large Canadian provinces56, and it thus seems implausible to attribute it to the

marginal effect of the carbon tax in raising fuel prices.

I instead exploit the information contained in the 2001, 2006, 2011 and 2016 waves

of the Canadian census, which contains data on commute-to-work modes at the DA

level for all Canadian CMAs. While the information on commute modes is not an

exhaustive representation of all car trips made in each DA, the granularity of the

data may shed light on whether residents of DAs located in British Columbia have

adjusted their behaviour following the implementation of the carbon tax, substituting

public transport or active commuting modes such as cycling and walking for car

trips. In particular, I estimate the following equation:

Modeit = τDit + θt + ηi + ϵit (14)

Where Modeit is the share of each commute mode (high emission, low emission,

56Namely, Alberta, Ontario and Quebec.
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public transport and zero emission), Dit is the carbon tax DID binary variable, θt

and ηi are time and unit-specific fixed effects, and ϵit is an idiosyncratic error term.

In additional specifications, I also add a vector of controls Xit which account for

population density, median income, and weather covariates (precipitation, maximum

and minimum temperature, and wind speed), hence the estimating equation becomes:

Modeit = τDit + βXit+ θt + ηi + ϵit (15)

I initially run the DID regressions for the whole sample, without trimming the

control pool. In further specifications, I restrict the control sample to the units which

receive positive ωi weights in the SDID estimation of the main result, in order to

ensure comparability across treatment and control cohorts and reduce the reliance

on potentially violated parallel trends. Here, I am effectively running a matched

variation of the traditional DID estimator, where the data is pre-processed according

to the data-driven outcome matching procedure used in the main SDID regression

of Section IV. Further, I retrieve the ωi weights from the SDID estimation and

weigh my restricted DID regressions with the SDID weights, assigning equal weights

ωtr = 1/Ntr to the treatment cohort. The weighted and matched version of the

estimating equation is thus:

Modeit
√
ωi = τDit

√
ωi + βXit+ θt

√
ωi + ηi

√
ωi + ϵit

√
ωi (16)

where:

ωi > 0,∀i ∈ i = {1, ..., Ntr, Ntr+1, ..., N}
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Figure A.25: New vehicle registrations in British Columbia by major fuel types

Note: The plot illustrates new vehicle registrations for gasoline and all other fuel types in British
Columbia between 2011 and 2021.
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Figure A.26: New minor vehicle groups registrations in British Columbia

Note: The plot illustrates new vehicle registrations for low emissions (battery electric, plug-in
hybrid, hybrid) and diesel fuel types in British Columbia between 2011 and 2021.
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Figure A.27: Passenger cars vs Truck and SUV sales in Canada Major Provinces

Note: The plot illustrates 1990-2021 trends in passenger cars and truck and SUV sales, for the
four largest Canadian Provinces. Top row: British Columbia and Alberta. Bottom row: Ontario
and Quebéc.
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Table A.16: DID results for low emissions commute mode

Low Emission Commute Mode

(1) (2) (3) (4) (5) (6)

DID 0.0408 0.0516 0.0535 0.0457 0.0510 0.0506

(0.0111) (0.0103) (0.0110) (0.0109) (0.0113) (0.0114)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.87321 0.84174 0.84532 0.87715 0.84674 0.84996

Adjusted R2 0.83078 0.78876 0.79354 0.83560 0.79490 0.79920

Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of low emissions commutes. All regressions
include dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum
and minimum temperature, and wind speed, plus the natural logarithm of population and median income.
Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which receive positive weights in the main
SDID regression. Columns (3) and (6) additionally include the estimated SDID unit weights ωi as regression
weights. Standard errors in parentheses are clustered at the CMA level.

Table A.17: DID results for zero emissions commute mode

Zero Emission Commute Mode
(1) (2) (3) (4) (5) (6)

DID 0.0057 0.0106 0.0117 0.0066 0.0088 0.0092
(0.0025) (0.0017) (0.0021) (0.0022) (0.0016) (0.0016)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.80811 0.80808 0.81877 0.81200 0.81355 0.82463
Adjusted R2 0.74390 0.74383 0.75810 0.74841 0.75047 0.76531
Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of zero emissions commutes. All regressions
include dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum
and minimum temperature, and wind speed, plus the natural logarithm of population and median income.
Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which receive positive weights in the main
SDID regression. Columns (3) and (6) additionally include the estimated SDID unit weights ωi as regression
weights. Standard errors in parentheses are clustered at the CMA level.
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A5. Environmental Justice Dynamics

A. Descriptive Statistics

Table A.18: Trends in PM2.5 by Quintile of EJ Dimensions, British Columbian DAs

EJ Dimension

Pop. Density Diversity Median Income

Baseline (2000-2002 average)

Top Quintile 8.66 8.83 6.68
Bottom Quintile 6.48 6.83 8.53
EJ Gap 2.18 2.01 -1.85

Post-treatment (2014-2016 average)

Top Quintile 6.63 6.67 5.47
Bottom Quintile 5.32 5.46 6.49
EJ Gap 1.31 1.21 -1.02

Notes: All values are expressed in µg/m3, for British Columbian DAs only. Baseline PM2.5

levels are calculated as 2000-2002 averages for all quintiles, post treatment PM2.5 levels are
2014-2016 averages. Quintiles are calculated on 2005-2007 levels for population density, and on
2006 Census levels for racial diversity and median income.

Table A.19: Trends in PM2.5 by Quintile of EJ Dimensions, Control DAs

EJ Dimension

Pop. Density Diversity Median Income

Baseline (2000-2002 average)

Top Quintile 9.88 9.67 8.69
Bottom Quintile 7.71 8.28 9.60
EJ Gap 2.17 1.39 -0.91

Post-treatment (2014-2016 average)

Top Quintile 7.05 7.10 6.41
Bottom Quintile 5.81 6.13 6.90
EJ Gap 1.24 0.97 -0.49

Notes: All values are expressed in µg/m3, for control DAs only. Baseline PM2.5 levels are
calculated as 2000-2002 averages for all quintiles, post treatment PM2.5 levels are 2014-2016
averages. Quintiles are calculated on 2005-2007 levels for population density, and on 2006
Census levels for racial diversity and median income.
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B. Additional Results
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Figure A.28: Additional Quintile-SDID results for Environmental Justice Gaps

Notes: Results of SDID regressions by quintile of baseline characteristics. Panel A) Quintiles of
Material Deprivation Index; B) Quintiles of Theil’s Diversity Entropy Index. ATT point estimates
reported in red, with 95% confidence intervals calculated with the Arkhangelsky et al. (2021)
procedure with 200 bootstrap runs in grey shading.
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A6. Pollution, Health and Distributional Implications

A. Estimates using RR from Krewski et al. (2009)

Figure A.29: Mortality reductions and monetary health gains

Notes: Spatial distribution of mortality reductions per 1000 residents (left panel) and health gains
per capita (right panel) using the RR estimates from Krewski et al. (2009), for the Vancouver (top
row), Victoria (middle row) and Abbotsford (bottom row) CMAs.
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B. Health-income relationships

Figure A.30: Spatial Relationship Between Health Gains and Median Income

Note: Bivariate distribution of health gains using the RR from Lepeule et al. (2012) (left panel)
and Krewski et al. (2009) (right panel) and median income for the Vancouver (top row), Victoria
(middle row) and Abbotsford (bottom row) CMAs.
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